

Zagazig University Faculty of Pharmacy Analytical Chemistry Department

Program and Course Specifications Master and Ph.D. Degrees

2012/2013

Analytical Chemistry department

Programs and Courses specifications

Master Degree

Analytical Chemistry department

Programs and Courses specifications

Program Specification

Program Specification

A- Basic Information

- 1- Program title: M. Pharm. Sci Degree in Analytical Chemistry
- 2- Program type: Monodisciplinary.
- 3- Faculty/ University: Faculty of Pharmacy, Zagazig University
- 4- Department: Analytical Chemistry
- 5- Coordinator: Prof. Dr. Hesham Ezzat
- 6- Date of program specification approval: 2012

B- Professional Information

1- Program aims:

The Analytical chemistry Master program aims to provide the postgraduate master students with a solid advanced background in the chemistry field to prepare them towards further higher degrees, to advance the experience of students in the area of good chemical laboratory techniques that will lead to a profound contribution in the pharmaceutical analytical chemistry as well as pharmaceutical industry and to enable the students to conduct professionally and independently analysis of pharmaceutical compounds by different methods qualitative- quantitative analysis.

2-Intended Learning Outcomes (ILOs):

The Program provides excellent opportunities for students to demonstrate knowledge and understanding qualities and develop skills appropriate for **Analytical chemistry** Master of sciences degree.

2-1- Knowledge and Understanding :

On successful completion of the Master degree Program, students will be able to:

A.1- Illustrate the basis of analytical chemistry and related subjects including: instrumental analysis, chemometry, physical chemistry, and chemical kinetics

A.2- Identify the major impact and applications of analytical chemistry on science, industries and on the environment.

A.3- Describe the most advanced techniques in analytical chemistry and their applications.

A.4- Comprehend the moral aspects required by professionals.

A.5- Demonstrate full commitment to good laboratory practice and quality assurance.

A.6- Demonstrate full awareness of ethics in all aspects of scientific research.

2-2 - Intellectual Skills:

On successful completion of the Master degree Program, students will be able to:

B.1- Analyze and interpret both quantitative and qualitative data obtained from analytical chemistry research in a specific and suitable form.

B.2- Suggest the most appropriate analytical technique for assaying the pharmaceutical or biological samples.

B.3- Integrate the gained knowledge of analytical chemistry, for assaying analytes of complex nature.

B.4- Write concrete reports on the obtained results with conclusive significances.

B.5-Recognize possible hazards during work and how to deal with.

B.6- Design a laboratory protocol for a requested analytical issue.

B.7-Assess problems encountered during analytical assay and take professional decisions in the area of specialization.

2-3 - Professional and Practical Skills:

It is intended that, on successful completion of the Master degree Program, students will be able to:

C.1- Recognize with personal command the recent laboratory techniques in the field of analytical chemistry.

C.2- Write with confidence reliable scientific reports.

C.3- Develop and assess novel methods of analysis.

2-4 - General and Transferable Skills:

On successful completion of the Master degree Program, students will be able to:

D.1- Interact effectively with patient and professionals.

D.2- Acquire computer skills such as internet, word processing, chemometric and kinetic softwares.

D.3- Practice self assessment and continues working in the field analytical chemistry.

D.4- Retrieve information from various sources in the field of analytical chemistry.

D.5- Set rules for judging others performance in the field of analytical chemistry.

D.6- Work effectively as a member of team.

D.7- Optimize work hours

D.8- Study independently and plan research studies.

3- Academic Standards:

• NARS (National Academic Reference Standards)

Matrix: Comparison between Master degree program ILOs and the

National Academic Reference Standards

	NARS	Program ILOs
anding	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas	A.1- Illustrate the basis of analytical chemistry and related subjects including: instrumental analysis, chemometry, physical chemistry, and chemical kinetics
	2.1.2- Mutual influence between professional practice and its impact on the environment.	A.2- Identify the major impact and applications of analytical chemistry on science, industries and on the environment.
and Unders	2.1.3- Scientific developments in the area of specialization.	A.3- Describe the most advanced techniques in analytical chemistry and their applications.
Knowledge	2.1.4- Moral and legal principles for professional practice in the area of specialization.	A.4- Comprehend the moral aspects required by professionals.
	2.1.5- Principles and the basics of quality in professional practice in the area of specialization.	A.5- Demonstrate full commitment to good laboratory practice and quality assurance.
	2.1.6- The fundamentals and ethics of scientific research.	A.6- Demonstrate full awareness of ethics in all aspects of scientific research.
Intellectual Skills	2.2.1- Analyze and evaluate information in the field of specialization and analogies to solve problems	B.1- Analyze and interpret both quantitative and qualitative data obtained from analytical chemistry research in a specific and suitable form.

	2.2.2- Solve specified problems in the lack or missing of some information.	B.2- Suggest the most appropriate analytical technique for assaying the pharmaceutical or biological samples.
	2.2.3-Correlate and integrate different pharmaceutical knowledge to solve professional problems.	B.3- Integrate the gained knowledge of analytical chemistry, for assaying analytes of complex nature.
	2.2.4- Conduct research and write scientific report on research specified topics.	B.4- Write concrete reports on the obtained results with conclusive significances.
	2.2.5- Evaluate and manage risks and potential hazards in professional practices in the area of specialization	B.5-Recognize possible hazards during work and how to deal with.
	2.2.6- Plan to improve performance in the field of specialization.	B.6- Design a laboratory protocol for a requested analytical issue.
	2.2.7- Professional decision-making in the contexts of diverse disciplines.	B.7-Assess problems encountered during analytical assay and take professional decisions in the area of specialization.
cal Skills	2.3.1- Master basic and modern professional skills in the area of specialization.	C.1- Recognize with personal command the recent laboratory techniques in the field of analytical chemistry
Professional and Practic	2.3.2- Write and evaluate professional reports.	C.2- Write with confidence reliable scientific reports.
	2.3.3- Assess methods and tools existing in the area of specialization.	C.3- Develop and assess novel methods of analysis

	2.4.1- Communicate effectively.	D.1- Interact effectively with patient and professionals.
	2.4.2- Effectively use information technology in professional practices	D.2- Acquire computer skills such as internet, word processing, chemometric and kinetic softwares.
e Skills	2.4.3- Self-assessment and define his personal learning needs.	D.3- Practice self assessment and continues working in the field analytical chemistry.
General and Transferable	2.4.4- Use variable sources to get information and knowledge.	D.4- Retrieve information from various sources in the field of analytical chemistry.
	2.4.5- Set criteria and parameters to evaluate the performance of others	D.5- Set rules for judging others performance in the field of analytical chemistry.
	2.4.6- Work in a team and lead teams carrying out various professional tasks.	D.6- Work effectively as a member of team.
	2.4.7- Manage time effectively.	D.7- Optimize work hours
	2.4.8- Continuous and self learning.	D.8- Study independently and plan research studies.

4-Curriculum Structure and Contents:

a- Program duration: 3-5 years

b- Program structure:

- The Masters program can be completed in 3-5 years.
- The Faculty of pharmacy implements the credit hour system.
- The program is structured as:

1- Courses: General (1 year) and Special

No. of credit hours for program courses:

Compulsory: 12

Elective: (2x4) 8

Special: (3x4) 12

2- Thesis: 30 hours

The candidate must complete a research project on an approved topic in the Pharmaceutical Sciences. To fulfill this requirement the student must present (written and orally) a research proposal and write a thesis.

3- General University Requirements: 10 credit hours including:

- a- TOEFL (400 units)
- b- Computer course

c-Program Curriculum:

Course Code	Course Title	Credit hours	Program ILOs Covered
	General Courses:		
M109	Drug design	4	A1, A2, A3, B3,D4
M101	Advanced Instrumental Analysis & chromatography I	4	A1, A2, B1,D4
M106	Physical chemistry	4	A1, B1, B2, D2, D5, D6
ME3	Elective A Good practice for analysis of drugs and quality control	4	A1, A3, A5, B1,B5,D2,D4
	Elective B	4	A1, A2, A5, B1,

Programs and Courses specifications

ME2	Drug Stability		B2
	Special Courses:		
Asp1	Potentiometry, voltammetry and electrochemical sensors	4	A1, A2, B6, B7, D2, D5, D6
Asp2	Kinetic methods of analysis	4	A1, A2, A4, A6, B1, B2, D4, D7, D8
Asp3	Spectrophotometry	4	A1, A2, B6, D4
	Thesis	30	A1, A2, A3, A4, A5, A6, B1, B2, B3, B4, B5, B6, B7, C1, C2, C3, D1, D2, D3, D4, D5, D6, D7 and D8

5-Program admission requirements:

- Candidate should have obtained the certificate of Bachelor degree in pharmaceutical sciences with general grade good and grade good in the specialty from one of the Egyptian universities or an equivalent certificate from a foreign institute recognized by the university.
- Admission is in October each year.

6- Admission Policy:

The faculty complies with the admission regulations and requirements of the Egyptian Supreme Council of Universities (ESCU).

7-Student assessment methods:

Method	ILOS	
	Knowledge and Understanding and Intellectual Skills	
Written exam		
Oral exam	Knowledge and Understanding ,Intellectual Skills and	
	General and Transferable Skills	
Activity	Intellectual Skills and General and Transferable Skills	
	Knowledge and Understanding ,Intellectual Skills &	
Seminars	General and Transferable Skills	
	Professional and practical Skills & General and	
Follow up	Transferable Skills	
	Knowledge and Understanding, Intellectual Skills,	
Thesis and	Professional and practical Skills & General and	
oral	Transferable Skills	
presentation		

Grade Scale	Grade point average	Numerical scale
	value (GPA)	
A+	5	≥ 95%
A	4.5	90- < 95%
B+	4	85- < 90%
В	3.5	80- < 85%
C+	3	75- < 80%

Programs and Courses specifications

С	2.5	70- < 75%
D+	2	65- < 70%
D	1.5	60- < 65%

8-Failure in Courses:

Students who fail to get 60% (1 point)

9-Methods of program evaluation

Evaluator	Method	Sample
	Program evaluation	Program report
Internal evaluator:	Courses evaluation	Courses report
Professor Dr.		
Hesham Ezzat		
	Program evaluation	Program report
External evaluator:	Courses evaluation	Courses report
Professor Dr.		
Others methods	Matrix with NARS Questionnaires	The Matrix Results of the questionnaires

Program coordinator Prof. Dr. Hesham Ezzat Balkeny **Head of Department**

Prof. Dr. Mohamed Naguib El-

Analytical Chemistry department

Programs and Courses specifications

Physical Chemistry

Analytical Chemistry.

Course specification of Physical Chemistry

A-<u>Course specifications:</u>

- Program on which the course is given: Master's of Pharmaceutical Sciences
- Major or Minor element of program: Major
- Department offering the program:
- Department offering the course: Analytical Chemistry.
- Date of specification approval: 2012/2013

1- Basic information:

Title: Physical Chemistry	Code: M106
Lectures: 4 hrs/week	Credit hours: 4 hrs/week
Total: 4 hrs/week	

<u>2- Overall aim of the course:</u>

On completion of the course, the students will be able to outline the principles of physical, general chemistry, thermochemistry and thermodynamics and describe states of matter, units of measurements and calculations with chemical formulas and equations.

3. Intended learning outcome s (ILOs) of Physical Chemistry:

A- K	nowledge and Understanding
a1	Outline the principles of physical, general chemistry,
al	thermochemistry and thermodynamics.
a)	Demonstrate the behavior and laws governing gas, solutions and
a2	colloids.
B- In	tellectual skills
h	Describe units of measurements and calculations with chemical
D ₁	formulas and equations.
	Integrate the knowledge and information obtained from physical
\mathbf{b}_2	and general chemistry principles in determining molecular
	formulas and stoichoimetry of the reaction.
D-G	eneral and Transferable skills
J	Acquire Computer skills like preparing presentations and
a ₁	collecting information through different data-bases.
d ₂	Work effectively as a member of team
d ₃	Improve scientific brain storming capabilities of team members

<u>4. Course Contents of Physical Chemistry:</u>

Week number	Contents
1	• Introduction, classification, state and properties of matter
2	• Units of measurements and dimensional analysis.
3	Calculations with chemical formulas and equations.

4	• Gases
	• Physical behavior of gases.
	• Measurement of gas pressure
5	• The gas laws:
	• Boyles law.
	• Charles law.
	• Gay-lussac's law.
	• Combined gas law.
6	• The ideal gas equation.
	• Dalton Law.
	• Graham's law.
	• Deviation from ideal behavior.
7	Thermochemistry:
	• Introduction.
	• Internal energy E.
	• Heat content.
	• Thermochemical equations.
8	Heat of Combustion
	• Heat of formation
	• Variation of heat of reaction with temperature.
	• Activity
9	• Thermodynamics:
	• The second law of thermodynamics
	• Measurement of the heat of the reaction
10	• Solutions:
	• Principles and concentration and solubility.

11	• Factors affecting solubility
	• Solute-solvent interaction.
	• Solubility and temperature.
	• Effect of pressure on solubility.
12	Solutions of liquids in liquids
	• Solutions of solid in liquids (Colligative properties
	of solutions.)
13	Colloids
	• Types of colloids
	• Preparation of sols.
14	• Purification of sols.
	• Electrical properties of sols.
15	Open discussion and revision

5- Teaching and Learning Methods:

- Lectures
- Self learning
- Open discussion

<u>6- Student Assessment methods :</u>

Written exams to assess:	a1, a2, b1 and b2
Oral exam to assess:	a1, a2, b1 and b2
Activity to assess:	d1, d2 and d3

Assessment schedule:

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
• Written exam	75	75 %
Oral exam	15	15 %
TOTAL	100	100%

7- References and books:

A-Scientific papers

B- Essential books:

Physical Chemistry, Developing A Dynamic Curriculum, Richard N.

Schwenz & Robert G. Mooore, American Chemical Society (1993)

C- Suggested books:

Principles of Physical Chemistry(Part 1-2) by Lion el M. Raff, Prentice Hall; 1st edition (2001).

Physical chemistry of surfaces, Arthur Ademson, John Wiley & Sons.inc:1st edition (2000).

D- Websites:

www.sciencedirect.com

www.rsc.org

Facilities required for teaching and learning:

1. For lectures: Black (white) boards, computer, data show.

- Course Coordinator: Ass. Prof Dr/ Wafaa Hassan
- Head of Department: Prof. Dr. Mohamed Naguib El-Balkeny
- Date: 201-8-28 بتاريخ Date: 201-8-28

Matrix I of Physical Chemistry									
		ILOs							
	Course Contents	Knov a unders	vledge nd tanding	Intelle ski	Intellectual skills		General and Transferable skills		
		a1	a2	b1	b2	d ₁	d ₂	d ₃	
1	Introduction, classification, state and properties of matter	X							
2	Units of measurements and dimensional analysis.			X					
3	Calculations with chemical formulas and equations.			x	x				
4	Gases Physical behavior of gases. Measurement of gas pressure	X							
5	The gas laws: Boyles law. Charles law. Gay-lussac's law. Combined gas law.		x						
6	The ideal gas equation. Dalton Law. Graham's law. Deviation from ideal behavior.		x						
7	Thermochemistry: Introduction. Internal energy E. Heat content. Thermochemical equations	x							
8	Heat of Combustion Heat of formation Variation of heat of reaction with temperature.	X				X	X	X	

Zagazig university

Analytical Chemistry department

Faculty of Pharmacy

	Activity						
	Thermodynamics:						
0	The second law of thermodynamics	v					
9	Measurement of the heat of the	А					
	reaction						
	Solutions:						
10	Principles and concentration and		X				
	solubility.						
	Factors affecting solubility						
11	Solute-solvent interaction.		v				
	Solubility and temperature.		A				
	Effect of pressure on solubility						
	Solutions of liquids in liquids						
12	Solutions of solid in liquids		Х				
	(Colligative properties of solutions.)						
	Colloids						
13	Types of colloids		Х				
	Preparation of sols						
14	Purification of sols.		x				
14	Electrical properties of sols.		Α				
15	Open discussion and revision	Х	X	X	X		

	Matrix II of Physical Chemistry										
NARS		NARS	Program ILOs	Course	Course contents	Sources	Teaching and learning methods		Method of assessment		
				iL03			Lecture	Self learning	Written exam	Oral Exam	Activity
2	.1	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A.1- Illustrate the basis of analytical chemistry and related subjects including: instrumental analysis, chemometry, physical chemistry, and chemical kinetics	al a2	Introduction, classification, state and properties of matter- Physical behavior of gases. Measurement of gas pressure- ThermochemistryHeat of combustion Thermodynamics The Gas laws The ideal gas equationSolutions ColloidsPurification of	Textbooks, Scientific papers and self learning	x	х	x	x	

2.2	2.2.1- Analyze and evaluate information in the field of specialization and analogies to solve problems	B.1- Analyze and interpret both quantitative and qualitative data obtained from analytical chemistry research in a specific and suitable form.	b1	Units of measurements and dimensional analysis Calculations with chemical formulas and equations.	Textbooks, Scientific papers and self learning	X	X	X	X	
2.2	2.2.2- Solve specified problems in the lack or missing of some information.	B.2- Suggest the most appropriate analytical technique for assaying the pharmaceutical or biological samples.	b2	Calculations with chemical formulas and equations.	Textbooks, Scientific papers and self learning	x	х	X	Х	
2.4	2.4.2- Effectively use information technology in professional practices	D.2- Acquire computer skills such as internet, word processing, chemometric and kinetic softwares.	d1	Activity						X

Analytical Chemistry department

Faculty of Pharmacy

2.4.6- Work in a team and lead teams carrying out various professional tasks.	D.6- Work effectively as a member of team.	d2	Activity			x
2.4.5- Set criteria and parameters to evaluate the performance of others	D.5- Set rules for judging others performance in the field of analytical chemistry.	d3	Activity			X

Analytical Chemistry department Programs and Courses specifications

Courses offered by other departments

Course specification of Drug Design

A- Course specifications:

- Program on which the course is given: Master of Pharmaceutical Sciences
- Major or Minor element of program: Major
- Department offering the program: Analytical chemistry Dept.
- Department offering the course: Medicinal chemistry Dept.
- Date of specification approval: 2012/2013

<u>1- Basic information:</u>

Title: Drug DesignCode: M109Lectures: 4 hrs/weekCredit hours: 4 hrs/weekTotal: 4 hrs/weekCredit hours: 4 hrs/week

<u>2- Overall aim of the course:</u>

• On completion of the course, the students will be able to define the drug design, diagnose possible techniques for drug design and discuss different methods of drug development.

<u>3. Intended learning outcome s (ILOs) of Drug Design</u>

Know	Knowledge and Understanding							
a1	Outline basic information related to drug design							
a2	Identify applications of drug design and drug development							
	Illustrate clearly the up-to date information & methods in drug							
a3	design							
Intell	ectual skills							
b1	Solve or propose solutions to specified problems in drug design							
General and Transferable skills								
d1	Write reports and present it.							

4. Course Content of Drug Design

Week number	Lecture contents (4hrs/week)
1	• Definition of drug design.
2	• Drug design applications.
3	• Docking.
4	• Docking.
5	Combinatorial chemistry
6	Combinatorial chemistry
7	• Drug development.
	Activity(Reports)
8	• SAR & QSAR in drug design
9	• Drug latentiantion.
10	Drug latentiantion

11	Principles in drug Modeling	
12	Computer-aided drug design	
	Activity(Reports)	
13	• Drug metabolism (Phase I)	
14	• Drug metabolism (Phase II)	
15	Revision & Open Discussion	

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussions

<u>6- Student Assessment methods:</u>

- Written exams to assess: a1,a2,a3&b1
- Oral exams to asses: a1,a2,a3&b1
- Activities to asses: d1

Assessment schedule:

Assessment (1): Activity	Week 7-12
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Weighting of Assessment:

Assessment method	Marks	Percentage
• Activity	10	10 %
• Written exam	75	75 %
Oral exam	15	15 %

TOTAL	100	100%

<u>7- References and books:</u>

A-Scientific papers

B- Essential books:

i- Burger's medicinal chemistry and drug discovery

Edited by Manfred E.wolff(2006)

ii- Computer-aided molecular design

Application of Agrochemicals, Materials & pharmaceuticals

Edited by Charles H.Reynolds, M.Katharine Holloway and Harold

K.COX(2003)

C- Suggested books:

i- The organic chemistry of drug design and drug action ,second

edition, Edited by Richard B.Silverman.(2005)

ii- Designing Bioactive molecules

Three dimensional Techniques and applications, Edited by Yvonne

C.Martin and Peter Willett.(2009)

D- Websites:

http://www.ncbi.nlm.nih.gov/sites/entrez http://journals.tubitak.gov.tr/chem/index.php http://www.pharmacopoeia.co.uk/ www.Pubmed.Com www.sciencedirect.com

Facilities required for teaching and learning:

For lectures: Black (white) boards, computers and data show.

- Course Coordinators: Prof.Dr/Mohammed Al-hussany
- Head of Department: Prof.Dr/ Mansour Abukull
- تم اعتماده في مجلس القسم بتاريخ 3 -9 -2012 •

Course specification of Advanced Instrumental Analysis & chromatography I

A- Course specifications:

- Program on which the course is given: Master of Pharmaceutical Sciences
- Major or Minor element of program: Major
- Department offering the program: Analytical chemistry Dept.
- Department offering the course: Medicinal chemistry Dept.
- Date of specification approval: 2012/2013

<u>1- Basic information:</u>

Title: Advanced Instrumental Analysis & chromatography I

Code: M101Lectures: 4 hrs/weekTotal: 4 hrs/week

2- Overall aim of the course:

On completion of the course, the students will be able to demonstrate fundamental knowledge and basic theories in instrumental analysis, state the concepts of diagnosing cardiac diseases, G.I.T diseases and infections through IR, HNMR and UV spectrophotometry and state the basic principles of (HPLC), HPLC/Mass, Gas Chromatography (GC) and GC/Mass and their medicinal applications.

Г

3. Intended learning outcomes (ILOs) of Advanced Instrumental Analysis & chromatography I

A-Kr	nowledge and Understanding	
o1	Illustrate properly theories of different instruments used in	
aı	analysis	
•	State medicinal and pharmaceutical applications of spectroscopy	
a2	, HPLC and GC	
B-Intellectual skills		
	Analyze & interpret qualitative & quantitative data obtained from	
b1	instrumental analysis	
D-General and Transferable skills		
d1	Write reports and present it.	

4. Course Content of Advanced Instrumental Analysis & chromatography I:

Week number	Lecture contents (4hrs/week)
1	Ultra-violet spectroscopy
2	Vibrational spectroscopy (IR spectroscopy)
3	Nuclear magnetic resonance (NMR)
4	Mass spectrometry(MS)
5	Medicinal application of spectroscopy in
	diagnosis of diseases
6	Surface analysis
7	Liquid chromatography
	Activity (Reports)
8	HPLC & its theory

9	HPLC & its medicinal and pharmaceutical
	application
10	Gas chromatography its theory
11	GC & its medicinal and pharmaceutical
	application
12	Supercritical fluid chromatography (SFC)
13	Capillary electrophoresis(CE)
14	Analytical application of polymers
	Activity (Reports)
15	Revision & open discussion

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussion

<u>6- Student Assessment methods:</u>

Written exams to assess:	a1,a2&b1
Oral exams to assess:	a1,a2&b1
Activities to asses:	b1&d1

Assessment schedule:

Assessment (1): Activity	Week 7-14
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Weighting of Assessment:

Assessment method	Marks	Percentage

Programs and Courses specifications

Activity	10	10 %
• Written exam	75	75 %
Oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A-Scientific papers

B- Essential books:

-Chemical stability of pharmaceuticals, Kenneth A. Connors, Kenneth

Antonio Connors, Gordon L. Amidon, Valentino J. Stella

-Pharmaceutical process validation Robert A. Nash, Alfred H. Wachter (2006)

C- Suggested books:

-Photostability of drugs and drug formulations, Hanne Hjorth Tønnesen (2004)

-U.S.P. & B.P (2010)

D- Websites:

http://www.ncbi.nlm.nih.gov/sites/entrez

http://journals.tubitak.gov.tr/chem/index.php

http://www.pharmacopoeia.co.uk/

www.Pubmed.Com

www.sciencedirect.com

Facilities required for teaching and learning:

1. For lectures: Black (white) boards, computer and data show.

- Course Coordinators: Prof. Dr. Al Sayed Lashen
- Head of Department Prof.Dr/ Mansour Abukull
- تم اعتماده في مجلس القسم بتاريخ 3-9-2012 Date: 2012

Analytical Chemistry department

Programs and Courses specifications

Good practice for analysis of drugs and quality control

Course specification of Good practice for analysis of drugs and quality control

A-<u>Course specifications:</u>

- Program on which the course is given: Master of Pharmaceutical Sciences
- Major or Minor element of program: Major
- Department offering the program: Analytical chemistry Dept.
- Department offering the course: Medicinal chemistry Dept.
- Date of specification approval: 2012/2013

1- Basic information:

Title: Quality in Instrumental Analysis and Quality Control

Code: ME3 Lectures: 4 hrs/week Credit hours: 4 hrs/week Total: 4 hrs/week

<u>2- Overall aim of the course:</u>

On completion of the course, the students will be able to choose & develop suitable analytical methodology, analyze and find an effective solution for a given complex problem.
<u>3. Intended learning outcome s (ILOs) of Good practice</u> <u>for analysis of drugs and quality control</u>

Knowledge and Understanding		
a1	Outline the principles of drug analysis & quality control	
a2	Express up-to-date information in the field of drug analysis	
a3	Illustrate the basics in quality control & quality assurance	
Intellectual skills		
	Analyze & evaluate obtained results qualitatively &	
b1	quantitatively	
b2	Evaluate GMP to avoid any hazards	
General and Transferable Skills		
	Improve professional abilities by evaluation of information from	
d1	different sources.	
d2	Write reports and present it.	

4. Course Content of Quality in Instrumental Analysis and Quality Control

Week number	Lecture contents (4hrs/week)
1	Good Manufacture Practice (GMP)
2	Application of quantitative analysis
3	Quality control
4	Quality assurance
5	Applications of Spectrophotometric
	analysis for dosage forms
	• Activity
6	• H1,C13,N15,F19 NMR
7	Advanced techniques in mass spectroscopy

Programs and Courses specifications

8	Atomic absorption
9	Fluorimetric analysis
10	Radioimmune Assay
11	Electrophoresis
12	GC-MS chemistry
	• Activity
13	Spectrodenistometric (TLC scanner)
14	Forensic chemistry
15	Revision & Open Discussion

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussion

<u>6- Student Assessment methods:</u>

Written exams to assess:	a1, a2, a3,b1,b2,d1&d2
Oral exams to assess:	a1, a2, a3,b1,b2,d1&d2
Activities to assess:	d1&d2

Assessment schedule:

Assessment (1): Activity	Week 5,12
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Weighting of Assessment:

Assessment method	Marks	Percentage
• Activity	10	10 %

Programs and Courses specifications

• Written exam	75	75 %
• Oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A-Scientific papers

B- Essential books:

Halpern, A in "Experimental physical chemistry" (2007)

Oxtoby, D and Nachtrieb, N in "Principles of Modern chemistry"(2009)

C- Suggested books:

Garfied, F.M., Klesta, E and Hirsch, J in" Quality Assurance Principles for Analytical Laboratories" (2011)

D- Websites:

http://www.ncbi.nlm.nih.gov/sites/entrez

http://journals.tubitak.gov.tr/chem/index.php

http://www.pharmacopoeia.co.uk/

www.Pubmed.Com

www.sciencedirect.com

Facilities required for teaching and learning:

For lectures: Black (white) boards, data show.

• Course Coordinators: Prof.Dr/ Sobhy ElAdl

Prof.Dr/ Mohammed Baraka

- Head of Department: Prof.Dr/ Mansour Abukull
- تم اعتماده في مجلس القسم بتاريخ 3-9-2012 Date: 2012

Programs and Courses specifications

Drug stability

Course specification of Drug stability

A- Course specifications:

• **Program on which the course is given:** Master of Pharmaceutical Sciences

•	Major or Minor element of program:	Major
•	Department offering the program:	Analytical chemistry
•	Department offering the course:	Pharmaceutics Dept.
•	Date of specification approval:	2012/2013

<u>1- Basic information:</u>

Title: **Drug stability** Lectures: 4 hrs/week Total: 4 hrs/week Code: ME2 Credit hours: 4 hrs/week

<u>2- Overall aim of the course:</u>

On completion of the course, the students will be able to describe the degradation of drugs and the methods to determine the order of reaction, Illustrate the stability programs for pharmaceutical products and the latest regulations for stability testing and gain the ability to predict the degradation pathways of a drug design a stabilization protocol and predict a product shelf-life.

<u>3- Intended learning outcome s (ILOs) of Drug stability:</u>

Know	Knowledge and Understanding		
1	Illustrate the principles of order of reactions and methods of		
al	determination order of reactions		
	Describe the principles of physical and chemical degradation of		
a2	drugs in different dosage forms		
a3	Mention stability testing of different dosage forms		
Intellectual skills			
	Suggest suitable stabilization methods for drugs in the various		
b1	dosage forms.		
	Design in a self-directed and original research investigations on		
b2	drug		
	stability in dosage forms from degradation pathways		
General and Transferable skills			
	Demonstrate critical thinking and decision making during		
d1	pharmaceutical preparations		

<u>4. Course Content of Drug stability:</u>

Week number	Lecture content (4 hr/w)
1	• Rate of chemical reactions
2	Orders of reactionsZero order
3	• First order
4	Second order
5	Apparent zero order reaction

Zagazig university

Faculty of Pharmacy

Programs and Courses specifications

	Pseudo first order reaction
6	• Determination of order of reaction
	-Substitution method
7	Graphical method
	(Presentation)
8	Half-life method
9	Routes of degradation
	• -Hydrolysis
	-Oxidation
10	-Photochemical degradation
	-Incompatibility
11	Physical degradation routes
	-Vaporization
	• -Aging
	• - adsorption
12	Complex reactions
13	Stability testing
14	Revision
15	Open discussion
	(Final Presentation)

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussion

<u>6- Student Assessment methods:</u>

Written exams to assess:	a1, a2, a3, b1, b2
Oral exam to assess:	a1, a2, a3, b1, b2, d1
Activities to assess:	b1, b2, d1

Assessment schedule:

Assessment (1): Activity	Week 7,15
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Weighting of Assessment:

Assessment method	Marks	Percentage
• Activity	10	10 %
• Written exam	75	75 %
• oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A-Essential books: Drug Stability: Principles and Practices (Drugs and the Pharmaceutical Sciences) by Jens T. Carstensen and Christopher Rhodes (2000).

B- Suggested books: Handbook of Stability Testing in Pharmaceutical Development: Regulations, Methodologies, and Best Practices, Kim Huynh-Ba, 389 (2008).

C- Websites: Pubmed, Sciencedirect, Weilyinterscience

Facilities required for teaching and learning:

1. For lectures: Black (white) boards, data show.

- Course Coordinators: Dr/ Hanaa Abd El-Fattah El-Ghamry
- Head of Department: Prof Dr/ Mahmoud Abdul-Ghany Mahdy
- Date: 2012-9-3 بتاريخ 3-9-2012 •

Analytical Chemistry department

Programs and Courses specifications

Special Courses

Analytical Chemistry department

Programs and Courses specifications

Potentiometry, Voltammetry and Electrochemical sensors

Course specification of Potentiometry, Voltammetry and Electrochemical sensors

A-<u>Course specifications:</u>

• Program on which the course is given: Master's of Pharmaceutical Sciences

• Major or Minor element of program:	Major
• Department offering the program:	Analytical Chemistry.
• Department offering the course:	Analytical Chemistry.
• Date of specification approval:	2012/2013

<u>1- Basic information:</u>

Title: Potentiometry, Voltammetry and Electrochemical sensors

Code: Asp1 Lectures: 4 hrs/week Total: 4 hrs/week

Credit hours: 4 hrs/week

<u>2- Overall aim of the course:</u>

On completion of the course, the students will be able to outline principles and procedures of different potentiometric, ion selective and voltammetric methods of analysis and describe different types of electrochemical sensors.

<u>3. Intended learning outcome s (ILOs) of Potentiometry,</u> <u>Voltammetry and Electrochemical sensors:</u>

A- K	nowledge and Understanding
<u>.</u>	Outline the basis and principles of potentiometric, voltammetric
aı	and ion selective electrode.
	Describe different types of ion-selective electrodes and
a∠	electrochemical sensors.
.3	Demonstrate different applications of potentiometry, voltammetry
as	and ion selective electrode.
B- In	tellectual skills
h.	Design appropriate experiments in the laboratory for assay of
D 1	substances.
b ₂	Assess the problems encountered during analytical procedures.
D-G	eneral and Transferable skills
d	Acquire Computer skills like preparing presentations and
\mathbf{u}_1	collecting information through different data-bases.
d ₂	Work effectively as a member of team
d ₃	Improve scientific brain storming capabilities of team members

<u>4. Course Contents of Potentiometry, Voltammetry and</u> <u>Electrochemical sensors:</u>

Week number	Content
1	Introduction to electrochemistry.
2	Potentionmetry:
	Introduction
	Principles of potentiometric measurements.
3	Reference electrodes and Metallic indicator

	electrodes.
4	Ion Selective Electrodes
	Theory
	Glass electrodes
5	Ion Selective Electrodes
	Liquid membrane electrodes
	Applications
6	Ion Selective Electrodes
	Solid state electrodes
	Coated wire electrodes
7	Applications of Potentiometry.
8	Voltammetry:
	Introduction
	Principles of voltammetric measurements.
	Activity
9	Voltammograms
10	Quantitative and Qualitative aspects of voltammetry
11	Voltametric Techniques
12	Quantitative voltammetric applications
13	Characterization voltammetric applications
14	Electrochemical Sensors
15	Open discussion and Revision

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning

- Open discussion

<u>6- Student Assessment methods:</u>

Written exams to assess:	a1, a2, a3, b1, b2
Oral exam to assess:	a1, a2, b1and b2
Activity to assess:	d1,d2 and d3

Assessment schedule:

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Weighting of Assessment:

Assessment method	Marks	Percentage
• Activity	10	10 %
• Written exam	75	75 %
• oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A-Scientific papers

B- Essential books:

1-Analytical Electrochemistry, Joseph Wang, Wiley-VCH, 2000.

2- Modern Analytical Chemistry, David Harvey, McGraw-Hill

Companies, 2000.

C-Websites:

www.tandfonline.com/toc/lanl20/current (Analytical Letters)

www.rsc.org

Facilities required for teaching and learning:

For lectures: Black (white) boards, computer, data show.

- Course Coordinators: Ass. Prof. Dr/ Gamal Ragab
- Head of Department: Prof. Dr. Mohamed Naguib El-Balkeny
- Date: 2012-8-28 بتاريخ Date: 2012-8-28

Matrix I of Potentiometry, Voltammetry and Electrochemical sensors										
		ILOs								
Course Contents		Knowledge and understanding			Intellectual skills		General and Transferable skills			
		a1	a2	a3	b1	b2	d ₁	d ₂	d ₃	
1	Introduction to electrochemistry	x								
2	Potentionmetry: *Introduction *Principles of potentiometric measurements.	x								
3	Reference electrodes and Metallic indicator electrodes.		x							
4	Ion Selective Electrodes Theory Glass electrodes		x							
5	5 Ion Selective Electrodes *Liquid membrane electrodes *Applications		x	X	x	x				
6	6 Ion Selective Electrodes *Solid state electrodes *Coated wire electrodes		x							
7	Applications of Potentiometry .			X	х	X				
8	 Voltammetry: *Introduction * Principles of voltammetric measurements. Activity 						X	X	X	
9	Voltammograms	X								
10	Quantitative and Qualitative aspects of voltammetry			x	X	x				

Zagazig university

Analytical Chemistry department

Faculty of Pharmacy

11	Voltametric Techniques	X						
12	Quantitative voltammetric applications			X	X	X		
13	Characterization voltammetric applications			X	X	X		
14	Electrochemical Sensors		X					
15	Open discussion and revision	X	X	X	х	X		

	Matrix II of Potentiometry, Voltammetry and Electrochemical sensors									
NARS		Program ILOs	Course ILOs	Course contents	Sources	Teaching and learning methods		Method of assessment		
						lecture	self learning	written exam	Oral Exam	Activity
2.1	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A.1- Illustrate the basis of analytical chemistry and related subjects including: instrumental analysis, chemometry, physical chemistry, and chemical kinetics	al	Introduction toelectrochemistryPotentionmetry:Introduction andPrinciples of potentiometricmeasurementsIon SelectiveElectrodes:TheoryVoltammetry:Introductionand Principles of voltammetricmeasurementsVoltammogramsVoltametricTechniques	Textbooks, Scientific papers and self learning	Х	Х	Х	Х	

			a2	Reference electrodes and Metallic indicator electrodes Glass electrodesLiquid membrane electrodesSolid state electrodes Coated wire electrodes Electrochemical Sensors					x	
	2.1.2- Mutual influence between professional practice and its impact on the environment.	A.2- Identify the major impact and applications of analytical chemistry on science, industries and on the environment.	a3	Ion Selective Electrode: ApplicationsApplications of PotentiometryQuantitative and Qualitative aspects of voltammetryQuantitative voltammetric applications Characterization voltammetric applications	Textbooks, Scientific papers and self learning	X	X	X	X	
2.2	2.2.6- Plan to improve performance in the field of specialization.	B.6- Design a laboratory protocol for a requested analytica issue.	b1	Ion Selective Electrode: ApplicationsApplications of PotentiometryQuantitative and Qualitative aspects of voltammetryQuantitative voltammetric applications Characterization voltammetric applications	Textbooks, Scientific papers and self learning	X	X	X	X	

2.2.7- Professional decision-making in the contexts of diverse disciplines.	B.7-Assess problems encountered during analytical assay and take professional decisions in the area of specialization.	b2	Ion Selective Electrode: ApplicationsApplications of PotentiometryQuantitative and Qualitative aspects of voltammetryQuantitative voltammetric applications Characterization voltammetric applications	Textbooks, Scientific papers and self learning	x	X	x	x	
2.4.2- Effectively use information technology in professional practices	D.2- Acquire computer skills such as internet, word processing, chemometric and kinetic softwares.	d1	Activity						X
2.4.6- Work in a team and lead teams carrying out various professional tasks.	D.6- Work effectively as a member of team.	d2	Activity						X

Zagazig university

Analytical Chemistry department

Faculty of Pharmacy

2.4.5- Set criteria						Х
and parameters to evaluate the performance of others	D.5- Set rules for judging others performance in the field of analytical chemistry.	d3	Activity			

Analytical Chemistry department

Programs and Courses specifications

Kinetic methods of analysis

Course specification of Kinetic methods of analysis

A-Course specifications:

- Program on which the course is given: Master's of Pharmaceutical Sciences
- Major or Minor element of program: Major
- Department offering the program: Analytical Chemistry.
- Department offering the course: Analytical Chemistry.
- Date of specification approval: 2012/2013

1- Basic information:

Title: Kinetic methods of analysis	Code: Asp2
Lectures: 4 hrs/week	Credit hours: 4 hrs/week
Total: 4 hrs/week	

<u>2- Overall aim of the course:</u>

On completion of the course, the students will be able to outline the principles of kinetics, reaction rates and factors affecting them, apply studied kinetic methods for determination of different pharmaceutical compounds and describe the analysis of kinetic results.

3. Intended learning outcomes (ILOs) of Kinetic methods of analysis:

A-K	nowledge and Understanding								
91	Outline the principles of kinetics, reaction rates and factors								
aı	affecting them.								
a2	Describe kinetic methods of analysis.								
.3	Establish a moral code by maintaining the quality of analytical								
as	measures.								
a4	Outline the basic steps toward quality of analytical measurements.								
a5	Maintain ethical approach all through analytical process.								
B- In	B- Intellectual skills								
h	Manipulate data, calculate activation energy and interpret kinetic								
D ₁	results								
1	Suggest the most appropriate kinetic method of analysis for the								
D ₂	assay of a chosen analyte.								
D-G	eneral and Transferable Skills								
	Retrieve information from various sources in the field of analytical								
a ₁	chemistry.								
d ₂	Optimize work hours and manipulate time threats								
d ₃	Study independently and plan research studies.								

<u>4. Course Contents of Kinetic methods of analysis:</u>

Week number	Contents
1	Mechanisms of chemical reactions
2	• Rates of the reaction and their measurement
3	• Order of the reaction (zero and first order)

Zagazig university

Analytical Chemistry department

Faculty of Pharmacy

4	• Order of the reaction (second and third order)
5	• Methods for the determination of the order of the
	reaction
	 Integration method
	• b)Method of equi-fractional part
6	Concentrations and Time: Half- Lives
7	Pseudo-order reactions
8	Molecularity of a reaction
	• Activity
9	• Theories of reaction rate:
	Collision theory
10	• Theories of reaction rate:
	• Transition state theory
11	Catalysis
12	• Kinetic methods of analysis and the
	interpretation of kinetic results.
13	• Activation energy (Ea), Determination of rate
	constant and Ea (Arrhenuis plot)
14	• The Quality of Analytical Measurements
	• Average run length: cusum charts
	Proficiency testing schemes
	Collaborative trials
	• Uncertainty
	• Acceptable sampling
15	Open discussion and revision

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussion

<u>6- Student Assessment methods:</u>

Written exams to assess:	a1, a2, a3, a4,a5, b1, b2
Oral exam to assess:	a1, a2, a3, a4,a5, b1, b2
Activity to assess:	d1,d2 and d3

Assessment schedule:

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
• Written exam	75	75 %
• Oral exam	15	15 %
TOTAL	100	100%

7- References and books:

A-Scientific papers

B- Essential books:

Kinetic Methods of Analysis, K.B. Yatsimirskii, Pegamon Press,

Oxford, 1966

C- Suggested books:

Chemical Kinetics And Reaction Dynamics, Paul L. Houston,

McGraw Hill comp., 2001.

D- Websites:

www.sciencedirect.com

www.rsc.org

Facilities required for teaching and learning:

For lectures: Black (white) boards, computer, data show.

- Course Coordinators: Ass. Prof Dr/ Mervat Hosny
- Head of Department: Prof. Dr. Mohamed Naguib El-Balkeny Date: 2012-8-28 تم اعتماده في مجلس القسم بتاريخ

	Matrix I of Kinetic methods of analysis											
						IJ	LOs					
Course Contents		Knowledge and understanding					Intellectual skills		General and Transferable Skills			
		a1	a2	a3	a4	a5	b1	b2	d1	d2	d3	
1	Mechanisms of chemical reactions	X										
2	Rates of the reaction and their measurement	x										
3	zero and first order Reactions	X										
4	second and third order reactions	X										
5	Methods for the determination of the order of the reaction	X										
6	Concentrations and Time: Half- Lives	x										
7	Pseudo-order reactions	X										
8	Molecularity of a reaction Activity	x							x	x	x	
9	Collision theory	X										
10	Transition state theory	X										
11	Catalysis	X										
12	Kinetic methods of analysis and interpretation of kinetic results.		x				x	X				
13	Activation energy (Ea), Determination of rate constant and Ea (Arrhenuis plot)						x					
14	The Quality of Analytical Measurements Average run length: cusum charts Proficiency testing schemes Collaborative trials Uncertainty			x	x	x						

Zagazig university

Analytical Chemistry department

Faculty of Pharmacy

	Acceptable sampling									
15	Open discussion and revision	X	x	x	x	X	x	X		

	Matrix II of Kinetic methods of analysis											
NARS Pro		Program ILOs	Course ILOs	Course contents	Sources	Teaching and learning methods		Method of assessment				
						Lecture	Self learning	Written exam	Oral Exam	Activity		
2.1	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A.1- Illustrate the basis of analytical chemistry and related subjects including: instrumental analysis, chemometry, physical chemistry, and chemical kinetics	al	Mechanisms of chemical reactionsRates of the reaction and their measurementZero, First, Second and Third order of reactionMethods for determining reaction order Conc. And TimePseudo order reactionMolecularity of ReactionCollision TheoryTransition state theoryCatalysis	Textbooks, Scientific papers and self learning	x	X	X	X			

2.1.2- Mutual influence between professional	A.2- Identify the major impact and applications of	_	Kinetic methods of analysis	Textbooks, Scientific					
practice and its impact on the environment.	analytical chemistry on science, industries and on the environment.	a2	and the interpretation of kinetic results	papers and self learning	Х	х	х	х	
2.1.4- Moral and legal principles for professional practice in the area of specialization.	A.4- Comprehend the moral aspects required by professionals.	a3	Proficiency testing schemes Collaborative trials Uncertainty Acceptable sampling	Textbooks, Scientific papers and self learning	x	x	X	x	
2.1.5- Principles and the basics of quality in professional practice in the area of specialization.	A.5- Demonstrate full committement to good laboratory practice and quality assurance.	a4	The Quality of Analytical Measurements	Textbooks, Scientific papers and self learning	x	x	X	x	
2.1.6- The fundamentals and ethics of scientific research.	A.6- Demonstrate full awareness of ethics in all aspects of scientific research.	a5	the Quality of Analytical Measurements	Textbooks, Scientific papers and self learning	x	x	X	x	

2.2	2.2.1- Analyze and evaluate information in the field of specialization and analogies to solve problems	B.1- Analyze and interpret both quantitative and qualitative data obtained from analytical chemistry research in a specific and suitable form.	b1	Kinetic methods of analysis and interpretation of kinetic resultsActivation energy (Ea), Determination of rate constant and Ea (Arrhenuis plot)	Textbooks, Scientific papers and self learning	x	X	X	x	
	2.2.2- Solve specified problems in the lack or missing of some information.	B.2- Suggest the most appropriate analytical technique for assaying the pharmaceutical or biological samples.	b2	Kinetic methods of analysis and interpretation of kinetic results	Textbooks, Scientific papers and self learning	x	X	X	x	
2.4	2.4.4- Use variable sources to get information and knowledge.	D.4- Retrieve information from various sources in the field of analytical chemistry.	d1	Activity						X
	2.4.7- Manage time effectively.	D.7- Optimize work hours	d2	Activity						х

Zagazig university

Analytical Chemistry department

Faculty of Pharmacy

2.4.8- Continuous and self learning.	D.8- Study independently and plan research studies.	d3	Activity			x

Analytical Chemistry department

Programs and Courses specifications

Spectrophotometry

Course specification of Spectrophotometry

A- Course specifications:

- Program on which the course is given: Master's of Pharmaceutical Sciences
- Major or Minor element of program: Major
 Department offering the program: Analytical Chemistry.
 Department offering the course: Analytical Chemistry.
 Date of specification approval: 2012/2013

<u>1- Basic information:</u>

Title: Spectrophotometry

Lectures: 4 hrs/week Total: 4 hrs/week Code: Asp3 Credit hours: 4 hrs/week

<u>2- Overall aim of the course:</u>

On completion of the course, the students will be able to outline the principles of spectrophotometry and describe theories, operation, instrumentation and applications of spectrophotometry and related techniques.
3. Intended learning outcomes (ILOs) of Spectrophotometry:

A-K	nowledge and Understanding
	Demonstrate the principles, instrumentation and operation of
a1	spectrophotometry, derivative spectrophotometry and flow
	injection spectrophotometry.
	Describe the instrumentation, pharmaceutical and biological
a2	applications of spectrophotometry, derivative spectrophotometry
	and flow injection spectrophotometry.
B- In	tellectual skills
b ₁	Determine the most appropriate assay design for the chosen
~1	analyte.
D-G	eneral and Transferable Skills
4	Retrieve information from various sources in the field of analytical
u ₁	chemistry.

<u>4. Course Contents of Spectrophotometry:</u>

Week number	Contents
1	Introduction to light absorption
	Electromagnetic spectrum
	Visible and ultraviolet spectra
	The Beer-Lambert law
	Deviation from Beer-Lambert law
2	Spectra of some important naturally occurring
	chromophores
3	Spectrophotometer configuration
4	Choice of spectrophotometer operating conditions
5	Use of spectrophotometer
	Baseline

	Isosbestic points
	Wavelength and absorbance calibration
	Choice and use of cuvettes
	Detailed examples
6	Derivative spectrophotometry
	Introduction
	Instrumentation
7	Derivative spectrophotometry
	Practical Aspects
	Applications
8	Spectrophotometric assays
	Introduction
	Assay Design
	Activity
9	Spectrophotometeric assay of protein
10	Enzyme based spectrophotometric assay
11	Luminescence based assay
12	Flow-injection spectrophotometry
13	Pharmaceutical and biological applications of
	spectrophotometry
14	Revision
15	Open Discussion

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussion

Programs and Courses specifications

<u>6- Student Assessment methods:</u>

Written exams to assess:	a1, a2, b1
Oral exam to assess:	a1, a2, b1
Activity to assess:	d1

Assessment schedule:

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Weighting of Assessment:

Assessment method	Marks	Percentage
• Activity	10	10 %
• Written exam	75	75 %
Oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A-Scientific papers

B- Essential books:

Spectrophotometry and spectrofluorimetry, Michael G. Gore, Oxford University press, 2000.

C- Suggested books:

UV-visible spectrophotometry of water and wastewater, Olivier

Thomas, Christopher Burgess, Elsevier, 2007.

Websites: www.tandfonline.com/toc/lanl20/current (Analytical

Letters)

www.rsc.org

Facilities required for teaching and learning:

For lectures: Black (white) boards, data show.

- Course Coordinators: Prof Dr/ Magda El-maamly
- Head of Department: Prof. Dr. Mohamed Naguib El-Balkeny
- Date: 2012-8-28 بتاريخ Date: 2012-8-28

	Matrix I of Spectrophotometry						
		ILOs					
	Course Contents	Knowledge and Understanding		Intellectual skills	General and Transferable Skills		
		a1	a2	b1	d ₁		
1	Introduction to light absorption	x					
	Spectra of some important naturally occurring						
2	chromophores	x					
3	Spectrophotometer configuration	x					
4	Choice of spectrophotometer operating						
4	conditions	X					
5	Use of spectrophotometer	x					
	Derivative spectrophotometry						
6	*Introduction	x					
	*Instrumentation						
	Derivative spectrophotometry						
7	*Practical Aspects		X	X			
	*Applications						
	*Introduction						
8	*Assav Design		х	x	X		
	Activity						
9	Spectrophotometeric assay of protein		x	X			
10	Enzyme based spectrophotometric assay		X	x			
11	Luminescence based assay		X	X			
12	Flow-injection spectrophotometry	x	X	X			
12	Pharmaceutical and biological applications of			-			
13	spectrophotometry		X	X			
14	Revision	x	x	X			
15	Open discussion	x	x	X			

	Matrix II of Spectrophotometry									
NARS		Program	Course	Course contents	Sources	Teaching and learning methods		Method of assessment		
		ILOS	ILUS			Lecture	Self learning	Written exam	Oral Exam	Activity
2.1	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A.1- Illustrate the basis of analytical chemistry and related subjects including: instrumental analysis, chemometry, physical chemistry, and chemical kinetics	al	Introduction to light absorptionSpectra of some important naturally occurring chromophores Spectrophotometer configurationChoice of spectrophotometer operating conditionsUse of spectrophotometer Derivative spectrophotometry *Introduction and InstrumentationFlow- injection spectrophotometry	Textbooks, Scientific papers and self learning	X	X	X	X	

Zagazig university

Faculty of Pharmacy

	2.1.2- Mutual influence between professional practice and its impact on the environment.	A.2- Identify the major impact and applications of analytical chemistry on science, industries and on the environment.	a2	Derivative spectrophotometry *Practical Aspects *Applications Spectrophotometric assays- Spectrophotometeric assay of proteinEnzyme based spectrophotometric assayLuminescence based assayFlow- injection spectrophotometry Pharmaceutical and biological applications of spectrophotometry	Textbooks, Scientific papers and self learning	X	X	X	X	
--	--	---	----	---	---	---	---	---	---	--

Zagazig university

Faculty of Pharmacy

2.2	2.2.6- Plan to improve performance in the field of specialization.	B.6- Design a laboratory protocol for a requested analytical issue.	b1	Derivative spectrophotometry *Practical Aspects *Applications Spectrophotometric assays- Spectrophotometeric assay of proteinEnzyme based spectrophotometric assayLuminescence based assayFlow- injection spectrophotometry Pharmaceutical and biological applications of spectrophotometry	Textbooks, Scientific papers and self learning	X	x	X	X	
2.4	2.4.4- Use variable sources to get information and knowledge.	D.4- Retrieve information from various sources in the field of analytical chemistry.	d1	Activity						x

Analytical Chemistry department

Programs and Courses specifications

Thesis Specification

Thesis of Master Degree

A-Thesis specifications:

- **Program on which the course is given:** Master of Pharmaceutical sciences (Analytical chemistry)
- Major or Minor element of program: Major
- Department offering the program: Analytical chemistry Dept.
- **Department offering the thesis:** Analytical chemistry Dept.
- Date of specification approval: 2012/2013

<u>1- Basic information:</u>

- Title: Master Thesis in Analytical chemistry
- Credit hours: 30 hrs

<u>2- Overall aim of the thesis:</u>

On completion of the thesis, the students will be able to:

- Design a robust study to answer the research question
- Identify and perform different techniques and methods used in the experimental work according to the designed protocol
- Analyze the results of the study in the light of prior knowledge
- Draw conclusions about the contribution to knowledge made by the study.

<u>3- Intended learning outcome's (ILOs):</u>

Know	vledge and Understanding
	Outline theoretical and advanced bases of analytical chemistry
al	related to main objectives of the thesis
	Determine the problem the thesis will handle in correlation with
a2	the community and surrounding environment
	Explain clearly the principles of different and advanced
a3	qualitative and quantitative analytical techniques
a4	Understand any legal aspects related to the thesis work.
_	Demonstrate GLP and quality assurance related to practical work
a5	of the thesis
a6	Identify and apply scientific experimental ethics.
Intell	lectual skills
	Solve problems related to practical work by obtained quantitative
b1	data from the practical work
	Discuss professional problems and suggest solutions relay on
b2	different pharmaceutical knowledge and recent information
b3	Combine required specialties to manage the subject under study
	Integrate scientific results and write report following conducting
b4	research
b5	Manage risks and hazards related to professional practical area
b6	Design a laboratory protocol for the work
b7	Decide what to do with full responsibility in scientific research
Profe	essional and practical skills
c1	Apply different techniques related to practical thesis work.

c2	Use and evaluate practical data to write report					
c3	Apply various biochemical techniques involved in the protocol					
Gene	General and Transferable skills					
d1	Communicate effectively with all people related to the work					
d2	Use information technology in review and thesis preparation					
d3	Evaluate the work and learning needs					
d4	Use various sources to get information about the subject understudy					
d5	Set rules for evaluation and judging others performance.					
d6	Work effectively as a member of a team					
d7	Acquire time management skills					
d8	Study independently and plan research studies.					

4. Thesis Content:

Steps	Content			
1^{st}	Suggest the possible points/ problems of research that the candidate can			
	work on in the frame of the aim of work and choose proper point			
	related to the problems of the community and surrounding			
	environment.			
	Collect all available information about this subject by all possible means.			
	Use internet, journals, books and others thesis to get previous and recent information about the subject understudy.			
	Design the protocol including the steps of work following the suitable timetable.			
	Increase the awareness of the recent biochemical and analytical techniques that will be used during practical work and determined by			

	the protocol.
	Integrate different knowledge (analytical chemistry, pharmaceutical and organic chemistry knowledge, biostatistics,) to solve suggested problem.
	Continuous evaluation to the thesis outcome according to the schedule.
2 nd	Identify different practical techniques and methods to assess biochemical parameters related to the subject under study.
	Operate scientific instruments according to instructions.
	Evaluate and manage hazards (chemical) throughout the whole practical work.
	Organize the experimental work according to the designed protocol (either parallel or sequential experiments).
	Separation of samples for qualitative and quantitative determination and assay.
	Understand any legal aspects related to the thesis work.
3 rd	Collect raw data for the tested biochemical parameters.
	Interpret raw data to get valuable information.
	Perform statistical analysis and biological correlation for the results.
	Present and describe the results graphically.
	Suggest solution to the problem understudy based on this presented data.
	Modify methods for analysis of samples
4^{th}	Communicate with supervisors to discuss results .
	Work effectively as a member of a team (e.g. Supervisors, various professionals and Technicians).

Present the results periodically in seminars.

Write scientific reports on the obtained results with conclusive significance.

Discuss obtained results in comparison with pervious literatures.

Suggest possible recommendations based on the outcome of the thesis and decide future plans.

Summarize the thesis in an understandable Arabic language for non professionals.

Write references in the required form (Thesis, Paper.....).

Demonstrate the thesis in a final power point presentation.

Continue self-learning throughout the experimental work and writing scientific papers.

<u>5- Teaching and Learning Methods:</u>

- Self learning (Activities, Research....)
- Open discussion

6- References:

- Websites: Pubmed, Sciencedirect, Weilyinterscience

Facilities required for:

- 1. For practical work: U.V spectrophotometer, Sonicator, Colorimeter, Flouremeter, HPLC.
- Head of Department: Prof. Dr. Mohamed Naguib El-Balkeny

	Masters of Analytical Chemistry			
	NARS	Program ILOs	Thesis ILOs	Thesis content
Iding	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas	A.1- Illustrate the basis of analytical chemistry and related subjects including: instrumental analysis, chemometry, physical chemistry, and chemical kinetics	Outline theoretical and advanced bases of analytical chemistry related to main objectives of the thesis	• Collect all available information about this subject by all possible means.
vledge and Understan	2.1.2- Mutual influence between professional practice and its impact on the environment.	A.2- Identify the major impact and applications of analytical chemistry on science, industries and on the environment.	Determine the problem the thesis will handle in correlation with the community and surrounding environment	• Suggest the possible points/ problems of research that the candidate can work on in the frame of the aim of work and choose proper point related to the problems of the community and surrounding environment.
Know	2.1.3- Scientific developments in the area of specialization.	A.3- Describe the most advanced techniques in analytical chemistry and their applications.	Explain clearly the principles of different and advanced qualitative and quantitative analytical techniques	• Increase the awareness of the recent analytical techniques that will be used during practical work and determined by the protocol.

	2.1.4- Moral and legal principles for professional practice in the area of specialization.	A.4- Comprehend the moral aspects required by professionals.	Understand any legal aspects related to the thesis work.	• Understand any legal aspects related to the thesis work.
	2.1.5- Principles and the basics of quality in professional practice in the area of specialization.	A.5- Demonstrate full commitment to good laboratory practice and quality assurance.	Demonstrate GLP and quality assurance related to practical work of the thesis	 Identify different analytical techniques and methods used to assess parameters related to the subject under study. Operate scientific instruments according to instructions.
	2.1.6- The fundamentals and ethics of scientific research.	A.6- Demonstrate full awareness of ethics in all aspects of scientific research.	Identify and apply scientific experimental ethics.	• Understand any legal aspects related to the thesis work.
Intellectual Skills	2.2.1- Analyze and evaluate information in the field of specialization and analogies to solve problems	B.1- Analyze and interpret both quantitative and qualitative data obtained from analytical chemistry research in a specific and suitable form.	Solve problems related to practical work by obtained quantitative data from the practical work	 Collect raw data for the tested samples. Interpret raw data to get valuable information. Perform statistical analysis for the results Present and describe the results graphically. Suggest solution to the problem

			understudy based on this
			presented data.
			Discuss obtained results in
		Discuss professional problems	comparison with pervious
2.2.2- Solve specified	B.2- Suggest the most appropriate	and suggest solutions relay on	literatures.
problems in the lack or	analytical technique for assaying	different pharmaceutical	• Suggest possible
missing of some information	the pharmaceutical or biological	knowledge and recent	recommendations based on the
inissing of some information.	samples.	information	outcome of the thesis and decide
		information	future plans
			• Integrate different knowledge
2.2.3-Correlate and integrate	B.3- Integrate the gained	Combine required specialties	(analytical chemistry,
different pharmaceutical	knowledge of analytical chemistry,	to manage the subject under	pharmaceutical and organic
knowledge to solve	for assaying analytes of complex	study	chemistry knowledge,
professional problems.	nature.	- Staty	biostatistics,) to solve
			suggested problem.
		1	

2.2.4- Conduct research and	B.4- Write concrete reports on the	Integrate scientific results and	• Write scientific reports on the
write scientific report on	obtained results with conclusive	write report following	obtained results with conclusive
research specified topics.	significances.	conducting research	significance.
2.2.5- Evaluate and manage risks and potential hazards in professional practices in the area of specialization	B.5-Recognize possible hazards during work and how to deal with.	Manage risks and hazards related to professional practical area	Evaluate and manage hazards(chemicals) throughout the whole practical work.
2.2.6- Plan to improve performance in the field of specialization.	B.6- Design a laboratory protocol for a requested analytical issue.	Design a laboratory protocol for the work	• Design the protocol including the steps of work following the suitable timetable.
2.2.7- Professional decision- making in the contexts of diverse disciplines.	B.7-Assess problems encountered during analytical assay and take professional decisions in the area of specialization.	Decide what to do with full responsibility in scientific research	•Suggest the possible points/ problems of research that the candidate can work on in the frame of the aim of work and choose proper point related to the problems of the community and surrounding environment. . Suggest possible recommendations based on the outcome of the thesis and decide future plans.

	2.3.1- Master basic and modern professional skills in the area of specialization.	C.1- Recognize with personal command the recent laboratory techniques in the field of analytical chemistry	Apply different techniques related to practical thesis work.	•Identify different analytical techniques and methods used to assess parameters related to the subject under study.
l Practical Skills	2.3.2- Write and evaluate professional reports.	C.2- Write with confidence reliable scientific reports.	Use and evaluate practical data to write report	 Summarize the thesis in an understandable Arabic language for non professionals. Write references in the required form (Thesis, Paper).
Professional and	2.3.3- Assess methods and tools existing in the area of specialization	C.3- Develop and assess novel methods of analysis	Apply various biochemical techniques involved in the protocol	 Operate scientific instruments according to instructions. Separation of samples by qualitative and quantitative determination and assay by advanced instruments and techniques.

	2.4.1- Communicateeffectively.2.4.2- Effectively use	D.1- Interact effectively with patient and professionals. D.2- Acquire computer skills such	Communicate effectively with all people related to the work	 Communicate with supervisors to discuss results . Present the results periodically
General and Transferable Skills	information technology in professional practices	as internet, word processing, chemometric and kinetic softwares.	Use information technology in review and thesis preparation	in seminarsDemonstrate the thesis in a final power point presentation.
	2.4.3- Self-assessment and define his personal learning needs.	D.3- Practice self assessment and continuos working in the field analytical chemistry.	Evaluate the work and learning needs	• Continuous evaluation to the thesis outcome according to the schedule.
	2.4.4- Use variable sources to get information and knowledge.	D.4- Retrieve information from various sources in the field of analytical chemistry.	Use various sources to get information about the subject understudy	• Use internet, journals, books and others thesis to get previous and recent information about the subject understudy.
	2.4.5- Set criteria and parameters to evaluate the performance of others	D.5- Set rules for judging others performance in the field of analytical chemistry.	Set rules for evaluation and judging others performance.	• Discuss obtained results in comparison with pervious literatures.
	2.4.6- Work in a team and lead teams carrying out various professional tasks.	D.6- Work effectively as a member of team.	Work effectively as a member of a team	• Work effectively as a member of a team (e.g. Supervisors, various professionals and Technicians).

Zagazig university

Faculty of Pharmacy

2.4.7- Manage time effectively.	D.7- Optimize work hours	Acquire time management skills	• Organize the experimental work according to the designed protocol (either parallel or sequential experiments).
2.4.8- Continuous and self learning.	D.8- Study independently and plan research studies.	Study independently and plan research studies.	• Continue self-learning throughout the experimental work and writing scientific papers.

Analytical Chemistry department

Programs and Courses specifications

PhD Degree

Analytical Chemistry department

Programs and Courses specifications

Program Specification

Program Specification

A- Basic Information

1- Program title: PhD. Pharm. Sci Degree in Analytical

Chemistry

- 2- Program type: Monodisciplinary.
- 3- Faculty/ University: Faculty of Pharmacy, Zagazig University
- 4- Department: Analytical Chemistry
- 5- Coordinator: Prof. Dr. Hesham Ezzat
- 6- Date of program specification approval: 2012

B- Professional Information

1- Program aims:

The Analytical chemistry PhD program aims to enable the students to contribute towards research in analytical chemistry field and to make the students perfect in applying different research methods, techniques, and tools in the field of analytical chemistry.

2-Intended Learning Outcomes (ILOs):

The Program provides excellent opportunities for students to demonstrate knowledge and understanding qualities and develop skills appropriate for Analytical chemistry PhD degree.

<u>2-1- Knowledge and Understanding :</u>

On successful completion of the PhD degree Program, students will be able to:

A.1- Illustrate the basis of analytical chemistry and related subjects including: Chemometry, Spectroscopy and Chromatography

A.2- Describe the vast important applications of analytical chemistry.

A.3- Comprehend the ethical aspects required by professionals.

A.4- Demonstrate full commitment to good laboratory practice and quality assurance.

A.5- Identify the beneficial impact and applications of analytical chemistry towards a safe environment.

2-2 - Intellectual Skills:

On successful completion of the PhD degree Program, students will be able to:

B.1- Apply the proper testing and calculations for data interpretation.

B.2- Suggest the most appropriate analytical technique for assaying the pharmaceutical or biological samples.

B.3- Apply proper research tools to establish novel facts and solve new or existing analytical problems using scientific methods.

B.4- Establish a good knowledge in writing and publishing research papers.

B.5- Recognize possible hazards during work and how to deal with.

B.6- Integrate the gained knowledge of analytical chemistry, for assaying pharmaceuticals of complex nature and Design a laboratory protocol for a requested analytical issue .

B.7- Take professional decisions in the area of specialization.

B.8- Show creativity in solving analytical problems.

B.9- Discuss different logical solutions for a given analytical problem.

2-3 - Professional and Practical Skills:

It is intended that, on successful completion of the PhD degree Program, students will be able to:

C.1- Recognize with personal command the recent laboratory techniques in Analytical Chemistry research.

C.2- Write with confidence reliable scientific reports in analytical chemistry field.

C.3- Develop and assess novel methods of analysis.

C.4- Implement sophisticated analytical instruments for assay of analytes of complex nature.

C.5- Set a plan for the improvement of professionals and researchers.

2-4 - General and Transferable Skills:

On successful completion of the PhD degree Program, students will be able to:

D.1- Interact effectively with patient and professionals.

D.2- Acquire computer skills such as internet, word processing, chemometric and kinetic softwares.

D.3- Help your colleagues and coworkers to increase the quality of research.

D.4- Practice self assessment and continues working in the field analytical chemistry.

D.5- Retrieve information from various sources in the field of analytical chemistry.

D.6- Work effectively as a member of team, and improve leadership skills.

D.7- Optimize work hours, and call for periodical scientific meetings.

3- Academic Standards:

• NARS (National Academic Reference Standards)

Matrix: Comparison between PhD degree program ILOs and the

National Academic Reference Standards

	NARS	Program ILOs
	2.1.1- Fundamental and in-depth knowledge and basic theories in the field of specialty and the closely related areas of pharmaceutical sciences	A.1- Illustrate the basis of analytical chemistry and related subjects including: Chemometry, Spectroscopy and Chromatography
erstanding	2.1.2- Fundamentals, methods, techniques, tools and ethics of scientific research	A.2- Describe the vast important applications of analytical chemistry.
Knowledge and Unde	2.1.3- The ethical and legal principles in pharmacy and academic practices	A.3- Comprehend the ethical aspects required by professionals.
	2.1.4- The principles and bases of quality assurance in professional practice in the field of specializations	A.4- Demonstrate full commitment to good laboratory practice and quality assurance.
	2.1.5- All relevant knowledge concerning the impact of professional practice on society and environment and the ways of their conservation and development	A.5- Identify the beneficial impact and applications of analytical chemistry towards a safe environment.
Intellectual Skills	2.2.1- Analyze, evaluate the data in his / her specified area, and utilize them in logical inference processes (induction/deduction).	B.1- Apply the proper testing and calculations for data interpretation.

2.2.2- Propose solutions to specified problems in the light of the available data (information).	B.2- Suggest the most appropriate analytical technique for assaying the pharmaceutical or biological samples.
2.2.3- Conduct research studies that add to the current knowledge.2.2.4- Formulate scientific papers.	 B.3- Apply proper research tools to establish novel facts and solve new or existing analytical problems using scientific methods. B.4- Establish a good knowledge in writing and publishing research papers.
2.2.5- Assess hazards and risks in professional practice in his / her area of specialization.	B.5- Recognize possible hazards during work and how to deal with
2.2.6- Plan to improve performance in the pharmaceutical area of interest.	B.6- Integrate the gained knowledge of analytical chemistry for assaying pharmaceuticals of complex nature and Design a laboratory protocol for a requested analytical issue .
2.2.7- Take professional decisions and bears responsibility in wide array of pharmaceutical fields	B.7- Take professional decisions in the area of specialization.
2.2.8- Be creative and innovative	B.8- Show creativity in solving analytical problems.
2.2.9- Manage discussions and arguments based on evidence and logic.	B.9- Discuss different logical solutions for a given analytical problem

l and Practical Skills	 2.3.1- Master basic and modern professional skills in the area of specialization. 2.3.2- Write and critically evaluate professional reports. 2.3.3- Evaluate and develop methods and tools existing in the area of specialization. 	 C.1- Recognize with personal command the recent laboratory techniques in Analytical Chemistry research. C.2- Write with confidence reliable scientific reports in analytical chemistry field. C.3- Develop and assess novel methods of analysis.
rofessional	2.3.4- Properly use technological means in a better professional practice	C.4- Implement sophisticated analytical instruments for assay of analytes of complex nature.
	2.3.5- Plan to improve professional practices and to improve the performance of other scholars	C.5- Set a plan for the improvement of professionals and researchers.
	2.4.1- Effective communication in its different forms	D.1- Interact effectively with patient and professionals.
General and Transferable Skills	2.4.2- Efficiently use the information technologies (IT) in improving the professional practices	D.2- Acquire computer skills such as internet, word processing, chemometric and kinetic softwares.
	2.4.3- Help others to learn and evaluate their performance.	D.3- Help your colleagues and coworkers to increase the quality of research.
	2.4.4- Self-assessment and continuous working.	D.4- Practice self assessment and continues working in the field analytical chemistry.
	2.4.5- Use various sources to get	D.5- Retrieve information from

	analytical chemistry.
2.4.6- Work as a member and lead a team of workers	D.6- Work effectively as a member of team, and improve leadership skills.
2.4.7-Direct scientific meetings and to manage time effectively	D.7- Optimize work hours, and call for periodical scientific meetings.

4-Curriculum Structure and Contents:

a- Program duration: 3-5 years

b- Program structure:

- The PhD program can be completed in 3-5 years.
- The Faculty of pharmacy implements the credit hour system.
- The program is structured as:

<u>1- Courses:</u>

No. of credit hours for program courses:

Special: (3x4) 12

<u>2- Thesis:</u> 30 hours

The candidate must complete a research project on an approved topic in the Pharmaceutical Sciences. To fulfill this requirement the student must present (written and orally) a research proposal and write a thesis.

<u>3- General University Requirements:</u> 10 credit hours including:

- a- TOEFL (500 units)
- b- Computer course

Programs and Courses specifications

c-Program Curriculum:

Course Code	Course Title	Credit hours	Program ILOs Covered
	Special Courses:		
Asp4	sisylanA cirtemomehC	4	A1, A3, A4, B1, B2, B7, B9, D2, D3, D4
Asp5	Advanced spectroscopy of Analytical chemistry	4	A1, A2, A5, B2, B6, B8, D5, D6, D7
Asp6	Chromatographic Analysis of Pharmaceuticals	4	A1, A2, B2, B5, B6, D2, D3
	Thesis	30	A1, A2, A3, A4, A5, B1, B2, B3, B4, B5, B6, B7, B8, B9, C1, C2, C3,C4, C5, D1, D2, D3, D4, D5, D6 and D7

5-Program admission requirements:

• Candidate should have obtained the certificate of Master degree in pharmaceutical sciences in the same specialty from one of the Egyptian universities or an equivalent certificate from a foreign institute recognized by the university.

6- Admission Policy:

The faculty complies with the admission regulations and requirements of the Egyptian Supreme Council of Universities (ESCU).

7-Student assessment methods:

Method	ILOS
	Knowledge and Understanding and Intellectual Skills
Written exam	
Oral exam	Knowledge and Understanding ,Intellectual Skills
	and General and Transferable Skills
Activity	Intellectual Skills and General and Transferable
	Skills
	Knowledge and Understanding ,Intellectual Skills &
Seminars	General and Transferable Skills
	Professional and practical Skills & General and
Follow up	Transferable Skills
	Knowledge and Understanding, Intellectual Skills,
Thesis and oral	Professional and practical Skills & General and
presentation	Transferable Skills

Grade Scale	Grade point average	Numerical scale
	value (GPA)	
A+	5	≥ 95%
А	4.5	90- < 95%
B+	4	85- < 90%
В	3.5	80- < 85%
C+	3	75- < 80%
С	2.5	70- < 75%
D+	2	65- < 70%
D	1.5	60- < 65%

8-Failure in Courses:

Students who fail to get 60% (1 point)

9-Methods of program evaluation

Evaluator	Method	Sample
	Program	Program report
Internal evaluator:	evaluation	Courses report
Professor Dr. Hesham	Courses	
Ezzat	evaluation	
	Program	Program report
External evaluator:	evaluation	Courses report
Professor Dr.	Courses	
	evaluation	
Others methods	Matrix with	The Matrix
	NARS	Results of the

Programs and Courses specifications

Questionnaires	questionnaires

Program coordinator

Head of Department

Prof. Dr. Hesham Ezzat Balkeny

Prof. Dr. Mohamed Naguib El-

Analytical Chemistry department

Programs and Courses specifications

Chemometric Analysis

Course specification of Chemometric Analysis

<u>A- Course specifications:</u>

- Program on which the course is given: Ph.D. of Pharmaceutical Sciences
- Major or Minor element of program: Major
 Department offering the program: Analytical Chemistry.
 Department offering the course: Analytical Chemistry.
 Date of specification approval: 2012/2013

<u>1- Basic information:</u>

Title: Chemometric Analysis

Lectures: 4 hrs/week Total: 4 hrs/week Code: Asp4 Credit hours: 4 hrs/week

<u>2- Overall aim of the course:</u>

On completion of the course, the students will be able to outline statistical and chemometrics methods used in analytical chemistry and apply chemometric analysis for different analytical problems.
3. Intended learning outcome s (ILOs) of Chemometric Analysis:

A-K	nowledge and Understanding
o1	Describe the design of analytical experiments using in
ai	chemometric analysis.
	Establish an ethical code by maintaining the quality of analytical
az	measures.
a3	Outline the basic steps toward quality of analytical measurements.
B- In	tellectual skills
h	Apply the proper testing and statistics for determination of
U 1	combination of errors and repeated measurements.
b ₂	Describe the method of choice for the analyte.
h2	Decide the most appropriate experimental design for the analyte of
05	choice.
b4	Discuss different possible methods for the assay of an analyte.
D-G	eneral and transferable Skills
d1	Acquire computer-aided analytical skills such as chemometric and kinetic softwares.
d2	Help your colleagues and coworkers to proceed with a scientific plan and interpret data.
d3	Practice self-assessment and continues working in the field analytical chemistry.

4. Course Contents of Chemometric Analysis:

Week number	Contents
1	Experimental Design and Optimization
	Randomization and blocking
	Two-way ANOVA
	Latin squares and other designs

	Interactions
	Factorial versus one-at-a-time design
	Factorial design and optimization
2	Experimental Design and Optimization
	Optimization: basic principles and univariate
	methods
	Optimization using the alternating variable
	search method
	The method of steepest ascent
	Simplex optimization
	Simulated annealing
3	Calibration Methods in Instrumental Analysis
	Calibration graphs in instrumental analysis
	The product-moment correlation coefficient
	The line of regression of y on x
	Errors in the slope and intercept of the regression
	line
	Calculation of a concentration and its random
	error
	Limits of detection
	The method of standard additions
4	Calibration Methods in Instrumental Analysis
	Use of regression lines for comparing analytical
	methods
	Weighted regression lines4
	Intersection of two straight lines
	ANOVA and regression calculations

	Curve fitting							
	Outliers in regression							
5	Multivariate Analysis							
	Initial analysis							
	Principal component analysis							
	Cluster analysis							
	Discriminate analysis							
	K-nearest neighbor method							
	Disjoint class modeling							
	Multiple regression							
6	Multivariate Analysis							
	Principal component regression							
	Multivariate regression							
	Partial least squares regression							
	Multivariate calibration							
	Artificial neural networks							
7	Non-parametric and Robust Methods							
	The median: initial data analysis							
	The sign test							
	The Wald-Wolfowitz runs test							
	The Wilcoxon signed rank test							
	Simple tests for two independent samples							
8	Non-parametric and Robust Methods							
	Non-parametric tests for more than two samples							
	Rank correlation							
	Non-parametric regression methods							

	Robust methods						
	Robust regression methods						
	The Kolmogorov test for goodness of fit						
	Activity						
9	Errors in quantitative analysis						
10	Statistics of Repeated Measurements						
	Mean and standard deviation						
	The distribution of repeated measurements						
	The sampling distribution of the mean						
	Confidence limits of the mean for large samples						
	Presentation of results						
	Confidence limits of the geometric mean for a						
	log-normal distribution						
	Propagation of errors						
	1 0						
11	Significance Tests						
11	Significance Tests Comparison of an experimental mean with a						
11	Significance Tests Comparison of an experimental mean with a known value						
11	Significance Tests Comparison of an experimental mean with a known value Comparison of two experimental means						
11	Significance Tests Comparison of an experimental mean with a known value Comparison of two experimental means Paired t-test						
11	Significance Tests Comparison of an experimental mean with a known value Comparison of two experimental means Paired t-test One-sided and two-sided tests						
11	Significance Tests Comparison of an experimental mean with a known value Comparison of two experimental means Paired t-test One-sided and two-sided tests F-test for the comparison of standard deviations						
11	Significance Tests Comparison of an experimental mean with a known value Comparison of two experimental means Paired t-test One-sided and two-sided tests F-test for the comparison of standard deviations Outliers						
11	Significance Tests Comparison of an experimental mean with a known value Comparison of two experimental means Paired t-test One-sided and two-sided tests F-test for the comparison of standard deviations Outliers Analysis of variance						
11 12	Significance Tests Comparison of an experimental mean with a known value Comparison of two experimental means Paired t-test One-sided and two-sided tests F-test for the comparison of standard deviations Outliers Analysis of variance Significance Tests						
11	Significance Tests Comparison of an experimental mean with a known value Comparison of two experimental means Paired t-test One-sided and two-sided tests F-test for the comparison of standard deviations Outliers Analysis of variance Significance Tests Comparison of several means						
11	Significance Tests Comparison of an experimental mean with a known value Comparison of two experimental means Paired t-test One-sided and two-sided tests F-test for the comparison of standard deviations Outliers Analysis of variance Significance Tests Comparison of several means The arithmetic of ANOVA calculations						

	Testing for normality of distribution								
13	The Quality of Analytical Measurements								
	Sampling								
	Separation and estimation of variances using ANOVA								
	Quality control methods								
	Stewhart charts								
	Establishing the process capability								
14	The Quality of Analytical Measurements								
	Average run length: cusum charts								
	Proficiency testing schemes								
	Collaborative trials								
	Uncertainty								
	Acceptable sampling								
	1 1 0								

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussion

<u>6- Student Assessment methods:</u>

Written exams to assess:	a1, a2, a3, b1, b2, b3,b4
Oral exam to assess:	a1, a2, a3, b1, b2, b3,b4
Activity to assess:	d1, d2 and d3

Assessment schedule:

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 16

Assessment (3): oral exam	Week 16

Weighting of Assessment:

Assessment method	Marks	Percentage			
• Activity	10	10 %			
• Written exam	75	75 %			
• Oral exam	15	15 %			
TOTAL	100	100%			

7- References and books:

A-Scientific papers

B- Essential books: Chemometrics for analytical chemistry, M.

Meloun, J. Militky and M. Forina.

Ellis Horwoodseries in analytical chemistry, 1992.

C- Suggested books: Statistics for the Quality Control Laboratory,

Mullins, E., (RSC, 2003).

Statistics for Environmental Science and Management, Manly, B. F. J.,

(Chapman & Hall, 2001).

D- Websites:

www.sciencedirect.com

www.rsc.org

Facilities required for teaching and learning:

For lectures: Black (white) boards, computer, data show.

- Course Coordinators: Prof Dr/ Hanaa Salah
- Head of Department: Prof. Dr. Mohamed Naguib El-Balkeny
- Date: 2012-8-28 بتاريخ Date: 2012-8-28

Matrix I of Chemometric Analysis												
	ILOs											
Course Contents			Knowledge and understanding			Intellectual skills				General and Transferable skills		
		a1	a2	a3	b1	b2	b3	b4	d ₁	d ₂	d ₃	
1	Experimental Design and Optimization	x					x					
2	Experimental Design and Optimization	x					x					
	Calibration Methods in Instrumental											
3	Analysis					x		x				
	Calibration Methods in Instrumental											
4	Analysis					x		x				
5	Multivariate Analysis					x		x				
6	Multivariate Analysis					x		x				
7	Non-parametric and Robust Methods					x		X				
0	Non-parametric and Robust Methods								X	X	X	
8	Activity					x		x				
9	Errors in quantitative analysis		x		x							
10	Statistics of Repeated Measurements				v							
11	Significance Tests				x x							
12	Significance Tests				x							
13	The Quality of Analytical Measurements			v								
14	The Ouality of Analytical Measurements											
14		_	x	X						<u> </u>	<u> </u>	
15	Revision and open discussion	x	x	x	x	x	x	x				

	Matrix II of Chemometric Analysis											
NARS		Program ILOs	Course	Course contents	Sources	Teaching and learning methods		Method of assessment				
						Lecture	Self learning	Written exam	Oral Exam	Activity		
2.1	2.1.1- Fundamental and in-depth knowledge and basic theories in the field of specialty and the closely related areas of pharmaceutical sciences	A.1- Illustrate the basis of analytical chemistry and related subjects including: Chemometry, Spectroscopy and Chromatography	al	Experimental Design and Optimization	Textbooks, Scientific papers and self learning	x	X	x	X			
	2.1.3- The ethical and legal principles in pharmacy and academic practices	A.3- Comprehend the ethical aspects required by professionals.	a2	The Quality of Analytical MeasurementsErrors in quantitative analysis	Textbooks, Scientific papers and self learning	x	x	x	x			

	2.1.4- The principles and bases of quality assurance in professional practice in the field of specializations	A.4- Demonstrate full committement to good laboratory practice and quality assurance.	a3	The Quality of Analytical Measurements	Textbooks, Scientific papers and self learning	X	X	X	X	
2.2	2.2.1- Analyze, evaluate the data in his / her specified area, and utilize them in logical inference processes (induction/deductio n).	B.1- Apply the proper testing and calculations for data interpretation.	b1	Errors in quantitative analysisStatistics of Repeated Measurements Significance Tests	Textbooks, Scientific papers and self learning	X	X	X	X	
2.2	2.2.2- Propose solutions to specified problems in the light of the available data (information).	B.2- Suggest the most appropriate analytical technique for assaying the pharmaceutical or biological samples.	b2	Calibration MethodsNon- parametric and Robust MethodsMultivariate Analysis	Textbooks, Scientific papers and self learning	X	X	X	X	

	2.2.7- Take professional decisions and bears responsibility in wide array of pharmaceutical fields	B.7- Take professional decisions in the area of specialization.	b3	Experimental Design and Optimization	Textbooks, Scientific papers and self learning	X	X	X	X	
	2.2.9- Manage discussions and arguments based on evidence and logic.	B.9- Discuss different logical solutions for a given analytical problem	b4	Calibration MethodsNon- parametric and Robust MethodsMultivariate Analysis	Textbooks, Scientific papers and self learning	X	X	X	X	
2.4	2.4.2- Efficiently use the information technologies (IT) in improving the professional practices	D.2- Acquire computer skills such as internet, word processing, chemometric and kinetic softwares.	d1	Activity						x

Zagazig university

Analytical Chemistry department

Faculty of Pharmacy

2.4.3- Help others to learn and evaluate their performance.	D.3- Help your colleagues and coworkers to increase the quality of research.	d2	Activity			x
2.4.4- Self- assessment and continuous working.	D.4- Practice self assessment and continues working in the field analytical chemistry.	d3	Activity			x

Analytical Chemistry department

Programs and Courses specifications

Advanced Spectroscopy of Analytical Chemistry

Course specification of Advanced Spectroscopy of Analytical Chemistry

A- Course specifications:

- Program on which the course is given: Ph.D. of Pharmaceutical Sciences
- Major or Minor element of program: Major
 Department offering the program: Analytical Chemistry.
 Department offering the course: Analytical Chemistry.
 Date of specification approval: 2012/2013

<u>1- Basic information:</u>

Title: Advanced Spectroscopy of Analytical Chemistry

Code: Asp5 Lectures: 4 hrs/week Credit hours: 4 hrs/week Total: 4 hrs/week

<u>2- Overall aim of the course:</u>

On completion of the course, the students will be able to outline principles and procedures of different spectroscopic techniques i.e. NMR and Mass spectrometry and describe theories and applications of NMR, Mass and tandem Mass spectrometry.

3. Intended learning outcomes (ILOs) of Advanced Spectroscopy of Analytical Chemistry:

A- K	nowledge and Understanding
ล1	Outline the basis and theory and operation of NMR and Mass and
u1	tandem mass spectrometry.
_	Apply studied spectroscopic techniques for the assay and detection
a2	of different analytes of pharmaceutical, biological or
	environmental origin.
a3	Describe an advanced technique for assaying analytes of complex
uc	nature.
B- In	tellectual skills
b ₁	Decide the use of the most appropriate instrumental technique in
~1	pharmaceutical, biological assay or environmental assay.
b ₂	Integrate the acquired knowledge in compound detection and
~ 2	structure elucidation
b3	Integrate the power of sophisticated techniques for the
~~	development of novel analytical assay models.
D-G	eneral and Transferable Skills
d1	Retrieve information from various sources in the field of analytical
41	chemistry.
d2	Work effectively as a member of team, and improve leadership
42	skills.
d3	Optimize work hours, and call for periodical scientific meetings.

4. Course Content of Advanced Spectroscopy of Analytical Chemistry:

Week number	Contents
1	Spectroscopy
	Introduction
	Theory
2	Classification of spectroscopic techniques

3	Nuclear magnetic resonance spectroscopy (NMR)
	Principals
	Vector Model
4	Nuclear magnetic resonance spectroscopy (NMR)
	Nuclear spin states
	Nuclear magnetic moments
	Absorption of Energy
	Resonance
5	Nuclear magnetic resonance spectroscopy (NMR)
	Chemical shift
	Local diamagnetic shielding
	Spin-spin splitting
6	Nuclear magnetic resonance spectroscopy (NMR)
	Typical ¹ H NMR absorptions by type of compound
7	Nuclear magnetic resonance spectroscopy (NMR)
	Carbon – 13 spectra, including heteronuclear coupling
	with other nuclei.
8	Mass Spectrometry
	Principle
	Mass spectrometer
	Sample introduction
	Activity
9	Mass Spectrometry
9	Mass Spectrometry Ionization methods:
9	Mass SpectrometryIonization methods:Electron ionization EI
9	Mass SpectrometryIonization methods:Electron ionization EIChemical ionization CI

	MALDI)
	Electrospray ionization ESI
10	Mass Spectrometry
	Mass analysis
	Detection and Quantification
11	Tandem Mass Spectrometry (MS/MS)
	Introduction
	Scan modes
	Reactions studied in MS/MS
12	Tandem Mass Spectrometry (MS/MS)
	Applications:
	Structure elucidation
	Selective detection
	Ion-molecule reaction
13	Mass spectrometry/ Chromatography coupling
	Coupling techniques: GC/MS, HPLC/MS, CE/MS
	Pharmaceutical, biological and environmental
	applications
14	Revision
15	Open Discussion

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussion

<u>6- Student Assessment methods:</u>

Written exams to assess:	a1, a2, a3, b1, b2, b3						
Oral exam to assess:	a1, a2, a3, b1, b2, b3, b4						
Activity to assess:	d1, d2 and d3						

Assessment schedule:

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
• Written exam	75	75 %
Oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A-Scientific papers

B- Essential books:

1-Introduction to spectroscopy, Donald L. Pavia, Gary M. Lampman, BROOKS/COOL, 2009.

2- Mass Spectrometry, Principles and Applications, Edmond de

Hoffmann, Vincent Stroobant, Johns Wiley and Sons Ltd, 2002.

Websites:

www.tandfonline.com/toc/lanl20/current (Analytical Letters) www.rsc.org

Facilities required for teaching and learning:

For lectures: Black (white) boards, computer, data show.

- Course Coordinators: Prof Dr/ Magda Elhenawee
- Head of Department: Prof. Dr. Mohamed Naguib El-Balkeny
- Date: 2012-8-28 بتاريخ Date: 2012-8-28

	ILOs									
	Course Contents	Knowledge and understanding			Intellectual skills			General and Transferable Skills		
	_	a1	a2	a3	b1	b2	b3	d1	d2	d3
1	Spectroscopy *Introduction *Theory	X								
2	Classification of spectroscopic techniques	х								
3	NMR :*Principals *Vector Model	x								
4	NMR: *Nuclear spin states *Nuclear magnetic moments *Absorption of Energy *Resonance	x								
5	NMR: *Chemical shift *Local diamagnetic shielding *Spin-spin splitting	X								
6	Typical 1H NMR absorptions by type of compound	X								
7	Carbon – 13 spectra, including heteronuclear coupling with other nuclei	х								
8	Mass Spectrometry: *Principle *Mass spectrometer *Sample introduction Activity	X						Х	Х	X
9	Mass Spectrometry: *Ionization methods	х								
10	Mass Spectrometry: *Mass analysis *Detection and Quantification		x		x					
11	MS/MS: *Introduction *Scan modes *Reactions studied in MS/MS		x		x					
12	MS/MS: *Applications		x	X	x	x	X			
13	3 Mass spectrometry/ Chromatography coupling: Coupling techniques, Applications		x	x	x	x	X			
14	Revision	x	x	X	x	x	x			
15	Open discussion	X	x	x	x	x	x			

	Matrix II of Advanced Spectroscopy of Analytical Chemistry											
NARS		Program	Program	Course	Course contents	Sources	Teaching and learning methods		Method o	Method of assessment		
		ILOS	ILOS			Lecture	Self learning	Written exam	Oral Exam	Activity		
2.1	2.1.1- Fundamental and in-depth knowledge and basic theories in the field of specialty and the closely related areas of pharmaceutical sciences	A.1- Illustrate the basis of analytical chemistry and related subjects including: Chemometry, Spectroscopy and Chromatography	al	Spectroscopy *Introduction *Theory Classification of spectroscopic techniques NMR :*Principals *Vector Model *Nuclear spin states *Nuclear magnetic moments *Absorption of Energy *Resonance *Chemical shift *Local diamagnetic shielding *Spin-spin splitting Typical 1H NMR absorptions by type of compoundCarbon – 13 spectra, including heteronuclear coupling with other nuclei Mass Spectrometry: *Principle	Textbooks, Scientific papers and self learning	Х	X	X	X			

Zagazig university

Faculty of Pharmacy

			*Mass spectrometer *Sample						
2.1.2- Fundamentals, methods, techniques, tools and ethics of scientific research	A.2- Describe the vast important applications of analytical chemistry.	a2	*Mass Spectrometry: Detection and Quantification *MS/MS: Reactions studied *Mass spectrometry/ Chromatography coupling	Textbooks, Scientific papers and self learning	X	X	X	X	
2.1.5- All relevant knowledge concerning the impact of professional practice on society and environment and the ways of their	A.5- Identify the beneficial impact and applications of analytical chemistry towards a safe environment.	a3	MS/MS: Applications *Mass spectrometry/ Chromatography coupling	Textbooks, Scientific papers and self learning	X	X	X	X	

	conservation and									
	development									
	2.2.2- Propose solutions to specified problems in the light of the available data (information).	B.2- Suggest the most appropriate analytical technique for assaying the pharmaceutical or biological samples.	b1	*Mass Spectrometry: Detection and Quantification *MS/MS: Reactions studied *Mass spectrometry/ Chromatography coupling	Textbooks, Scientific papers and self learning	Х	X	X	X	
2.2	2.2.6- Plan to improve performance in the pharmaceutical area of interest.	B.6- Integrate the gained knowledge of analytical chemistry, for assaying pharmaceuticals of complex nature.	b2	MS/MS: Applications *Mass spectrometry/ Chromatography coupling	Textbooks, Scientific papers and self learning	Х	x	X	x	
	2.2.8- Be creative and innovative	B.8- Show creativity in solving analytical problems.	b3	MS/MS: Applications *Mass spectrometry/ Chromatography coupling	Textbooks, Scientific papers and self learning	X	X	X	X	

	2.4.5- Use various sources to get information and knowledge.	D.5- Retrieve information from various sources in the field of analytical chemistry.	d1	Activity			Х
2.4	2.4.6- Work as a member and lead a team of workers	D.6- Work effectively as a member of team, and improve leadership skills.	d2	Activity			Х
	2.4.7-Direct scientific meetings and to manage time effectively	D.7- Optimize work hours, and call for periodical scientific meetings.	d3	Activity			х

Analytical Chemistry department Programs and Courses specifications

Chromatographic Analysis of Pharmaceuticals

Course specification of Chromatographic Analysis of Pharmaceuticals

A- Course specifications:

- Program on which the course is given: Ph.D. of Pharmaceutical Sciences
- Major or Minor element of program: Major
 Department offering the program: Analytical Chemistry.
 Department offering the course: Analytical Chemistry.
 Date of specification approval: 2012/2013

<u>1- Basic information:</u>

Title: Chromatographic Analysis of Pharmaceuticals

Code: Asp6 Lectures: 4 hrs/week Total: 4 hrs/week

Credit hours: 4 hrs/week

<u>2- Overall aim of the course:</u>

On completion of the course, the students will be able to outline practical ways of using chromatographic techniques for solving chemical problems qualitatively and quantitively and describe theories and applications of different chromatographic techniques.

3. Intended learning outcomes (ILOs) of Chromatographic Analysis of Pharmaceuticals:

A- K	nowledge and Understanding				
ล1	Outline the basis, theory and operation of chromatographic				
uI	analysis.				
a2	Describe the pharmaceutical and biological applications of				
u _	chromatographic techniques.				
B- In	tellectual skills				
b ₁	Assess the problems encountered during analytical procedures.				
b ₂	Implement and apply safety measures all through analytical				
~2	procedures.				
	Integrate the information and knowledge gained from the course in				
b3	developing new sensitive analytical methods using appropriate				
	reagents for the determination of different compounds.				
D-G	D- General and transferable Skills				
d1	Acquire computer-aided analytical skills such as chemometric and kinetic				
	softwares.				
d2	help your colleagues and coworkers to proceed with a scientific plan and interpret data.				

4. Course Contents of Chromatographic Analysis of Pharmaceuticals:

Week number	Contents
1	General aspects of chromatography
	General concept of analytical chromatography
	The chromatogram
	Column efficiency
	Retention parameters
2	General aspects of chromatography
	Optimization of chromatographic analysis
	Classification of analytical techniques.

	Problems			
	Safety Measures all through the analytical process			
3	Gas Chromatography			
	Components of GC installation.			
	Carrier gas and flow regulation.			
	Sample introduction and the injection chamber			
	Thermostatically controlled oven			
	Columns			
	Stationary Phases			
4	Gas Chromatography			
	Principal gas chromatographic detectors.			
	Retention indexes and stationary phase constants			
	problems and applications			
5	High performance liquid chromatography			
	The beginnings of HPLC.			
	General concept of HPLC system.			
	Pumps and gradient elution.			
	Injectors.			
	Columns.			
6	High performance liquid chromatography			
	Stationary phases.			
	Mobile phases.			
	Paired ion chromatography.			
	Principal detectors.			
	Applications and problems			
	Applications and problems.			
7	Ion chromatography			

	Basics of ion chromatography
	Stationary phases
	Mobile phases.
	Conductivity detectors.
8	Ion Chromatography
	Areas of the peaks and data treatment.
	External standard method
	Internal standard method
	Problems and applications.
	Activity
9	Thin layer chromatography
	Principle of TLC.
	Characteristics of TLC.
	Stationary phases.
	Separation and retention parameters.
	Quantitative TLC.
	Problems.
10	Supercritical fluid chromatography
	Supercritical fluids.
	Instrumentation.
	SFC in chromatographic techniques.
11	Size exclusion chromatography
	Principle of SEC
	Stationary and mobile phases.
	Instrumentation and applications.
12	Capillary electrophoresis and
	electrochromatography

	Principal
	Instrumentation
	Capillary electrochomatography
	Problems and applications
13	Planar chromatography
	Introduction
	Materials and techniques
	Detection
	Method development*Applications
14	Revision and open discussion
15	Revision and open discussion

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussion
- •

<u>6- Student Assessment methods:</u>

Written exams to assess:	a1, a2, b1, b2, b3
Oral exam to assess:	a1, a2, a3, b1, b2, b3, b4
Activity to assess:	d1, d2 and d3

Assessment schedule:

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Weighting of Assessment:

Assessment method Marks Percentage	Assessment method	Marks	Percentage	
------------------------------------	-------------------	-------	------------	--

Programs and Courses specifications

• Activity	10	10 %
• Written exam	75	75 %
• Oral exam	15	15 %
TOTAL	100	100%

7- References and books:

A-Scientific papers B- Essential books:

1-Chemical Analysis, Modern Instrumentation Methods And

Techniques, Francis Rouessac, and Annick Rouessac, John Wiley and Sons, Ltd, 2007.

2- Chromatographic analysis of pharmaceutics, John A. Adamovics,

Marcel Dekker, 1997.

Websites:

www.sciencedirect.com

www.tandfonline.com/toc/lanl20/current (Analytical Letters)

www.rsc.org

Facilities required for teaching and learning:

For lectures: Black (white) boards, data show.

- Course Coordinators: Prof Dr/ Mohamed El-Belkeni
- Head of Department: Prof. Dr. Mohamed Naguib El-Balkeny
- Date: 2012-8-28 بتاريخ Date: 2012-8-28

ľ	Matrix I of Chromatographic	c Anal	ysis o	f Pl	nar	mac	eutic	als
				I	LOs	5		
	Course Contents	Know an underst	Int	ellec skill	tual s	General and transferable Skills		
		a1	a2	b1	b2	b3	eutica Gen ar transfe Ski d1	d2
1	General aspects of chromatography:*General concept of analytical chromatography *The chromatogram *Column efficiency *Retention parameters	X						
2	General aspects of chromatography: *Optimization of chromatographic analysis *Classification of analytical techniques. *Problems *Safety Measures all through the analytical process	X	X	X	X	X		
3	GC *Components of GC installation *Carrier gas and flow regulation. *Sample introduction and the injection chamber *Thermostatically controlled oven *Columns *Stationary Phases	X						
4	GC: *Principal gas chromatographic detectors. *Retention indexes and stationary phase constants *problems and applications	X	X	X		X		
5	HPLC: *The beginnings of HPLC *General concept of HPLC system *Pumps and gradient elution *Injectors *Columns	x						
6	HPLC: *Stationary phases *Mobile phases *Paired ion chromatography *Principal detectors *Applications and problems	X	X	x		x		
7	Ion chromatography *Basics of ion chromatography *Stationary phases *Mobile phases *Conductivity detectors	X						
8	Ion Chromatography: * Areas of the peaks and data treatment *External standard method *Internal standard method	X	X	X		X	X	X

- 139 -

Zagazig university

Faculty of Pharmacy

	*Problems and applications							
	Activity							
	TLC: * Principle *Characteristics of TLC							
9	*Stationary phases *Separation and retention	X	X	X		Х		
	parameters *Quantitative TLC *Problems							
10	SFC: * Supercritical fluids *Instrumentation	v						
10	*SFC in chromatographic techniques.	А						
	SEC: *Principle of SEC *Stationary and							
11	mobile phases *Instrumentation and	X	X	Х		X		
	applications							
	CE and electrochromatography * Principal							
10	*Instrumentation *Capillary	v				v		
12	electrochomatography *Problems and	X	X	X		X		
	applications							
	Planar chromatography: *							
12	Introduction*Materials and techniques							
13	*Detection *Method development	X	X	X		X		
	*Applications							
14	Revision and open discussion	X	x	x	X	X		
15	Revision and open discussion	x	v	v	v	x		
	Activity		A					
16	Aduvity						X	X

	Matrix II of Chromatographic Analysis of Pharmaceuticals											
NARS		Program ILOs	Course ILOs	Course contents	Sources	Teaching and learning methods		Method of assessment				
						Lecture	Self learning	Written exam	Oral Exam	Activity		
	2.1.1- Fundamental											
	and in-depth	A.1- Illustrate the		General aspects of								
	knowledge and	basis of analytical			chromatographyGCHPLC	Textbooks,						
	basic theories in	chemistry and related			-Ion ChromatographyTLC							
2.1	the field of	subjects including:	a1	SFCSECCapillary	papers and	х	Х	х	х			
	specialty and the	Chemometry,		electrophoresis and	self learning							
	closely related	Spectroscopy and		electrochromatographyPlanar	son rouning							
	areas of	Chromatography		Chromatography								
	pharmaceutical											
	sciences											

	2.1.2- Fundamentals, methods, techniques, tools and ethics of scientific research	A.2- Describe the vast important applications of analytical chemistry.	a2	General aspects of chromatographyGCHPLC -Ion ChromatographyTLC SECCapillary electrophoresis and electrochromatography Planar Chromatography (Problems and Applications)	Textbooks, Scientific papers and self learning	X	X	X	X	
2.2	2.2.2- Propose solutions to specified problems in the light of the available data (information).	B.2- Suggest the most appropriate analytical technique for assaying the pharmaceutical or biological samples.	b1	General aspects of chromatographyGCHPLC -Ion ChromatographyTLC SECCapillary electrophoresis and electrochromatography Planar Chromatography (Problems and Applications)	Textbooks, Scientific papers and self learning	Х	X	X	X	

Zagazig university

Analytical Chemistry department

Faculty of Pharmacy

2.2.5- Assess hazards and risks in professional practice in his / her area of specialization.	B.5- Recognize possible hazards during work and how to deal with	b2	Safety Measures all through analytical process					X	
2.2.6- Plan to improve performance in the pharmaceutical area of interest.	B.6- Integrate the gained knowledge of analytical chemistry, for assaying pharmaceuticals of complex nature.	b3	General aspects of chromatographyGCHPLC -Ion ChromatographyTLC SECCapillary electrophoresis and electrochromatography Planar Chromatography (Problems and Applications)	Textbooks, Scientific papers and self learning	x	x	X	x	
2.4.2- Efficiently use the information technologies (IT) in	D.2- Acquire computer skills such as internet, word processing, chemometric and	d1	Activity						X

	improving the	kinetic softwares.					
	professional						
	practices						
ŀ	242 Holm						x
	2.4.5- neip	D.3- Help your					7
	others to learn	colleagues and					
	and evaluate	ae d2	d2	Activity			
	their coworkers to increase the quality of research.						
		the quality of research.					
	performance.						
Analytical Chemistry department

Programs and Courses specifications

Thesis Specification

Thesis Specification of PhD Degree

A-Thesis specifications:

- **Program on which the course is given:** PhD of Pharmaceutical sciences (Analytical chemistry)
- Major or Minor element of program: Major
- Department offering the program: Analytical chemistry Dept.
- **Department offering the thesis:** Analytical chemistry Dept.
- Date of specification approval: 2012/2013
- 1- Basic information:
- Title: PhD Thesis in Analytical chemistry
- Credit hours: 30 hrs

<u>2- Overall aim of the thesis:</u>

On completion of the thesis, the students will be able to:

- Identify and perform different techniques and methods used in the experimental work according to the designed protocol
- Derive and present the results of the study from the data collected
- Draw conclusions about the contribution to knowledge made by the study which may be concerned with the problem under investigation, the methods deployed or the student as researcher

<u>3- Intended learning outcome's (ILOs):</u>

Know	Knowledge and Understanding			
	Outline different principles of analytical chemistry and their			
al	possible application in the research study			
	Demonstrate methods and techniques used during working in the			
a2	area of specialization of research			
	Understand the legal aspects of for professional and academic			
a3	practices			
	Illustrate the importance of quality assurance during the analysis			
a4	of different drugs			
_	Define different practices that can be used in understanding the			
a5	problem of the research and help in solving it			
Intell	ntellectual skills			
	Solve problems related to practical work by obtained quantitative			
b1	data from the practical work			
	Discuss professional problems and suggest solutions rely on			
62	knowledge and recent information			
b3	Plan a research in the research field			
	Integrate scientific results and write report following conducting			
b4	research			
b5	Manage risks and hazards related to professional practical area			
	Outline principles that should be followed in research to develop			
b6	laboratory performance			
b7	Decide what to do with full responsibility in scientific research			
1.0	Demonstrate creativity and innovation in modifying techniques			
b8	and in utilization of various therapy.			

Profe	Professional and practical skills			
c1	Apply different techniques related to practical thesis work.			
c2	Use and evaluate practical data to write report			
o 3	Estimate laboratory techniques used in analytical chemistry.			
65	Develop methods of assay of various parameters			
4	Use IT skills in collecting information, presenting results and			
c4	writing thesis			
c5	Improve laboratory techniques.			
Gener	General and Transferable skills			
d1	Interact with health care professional.			
d2	Use information technology in review and thesis preparation			
d3	Set rules for evaluation and judge others performance.			
	Study independently and evaluate learning needs in analytical			
d 4	chemistry.			
d5	Use up-to-date information in analytical chemistry.			
d6	Implement tasks as a member of a team.			
d7	Utilize time effectively to achieve goals			

4. Thesis Content:

Steps	Content
1^{st}	Suggest the possible points/ problems of research that the candidate can
	work on in the frame of the aim of work and choose proper point related
	to the problems of the community and surrounding environment.
	Collect all available information about this subject by all possible means.
	Use internet, journals, books and others thesis to get previous and recent information about the subject understudy.

	Design the protocol including the steps of work following the suitable timetable.
	Increase the awareness of the recent biochemical and analytical techniques that will be used during practical work and determined by the protocol.
	Integrate different knowledge (analytical chemistry, pharmaceutical and organic chemistry knowledge, biostatistics,) to solve suggested problem.
	Continuous evaluation to the thesis outcome according to the schedule.
2^{nd}	Identify different practical techniques and methods to assess biochemical parameters related to the subject under study.
	Operate scientific instruments according to instructions.
	Evaluate and manage hazards (chemical) throughout the whole practical work.
	Organize the experimental work according to the designed protocol (either parallel or sequential experiments).
	Separation of samples for qualitative and quantitative determination and assay.
	Understand any legal aspects related to the thesis work.
3 rd	Collect raw data for the tested biochemical parameters.
	Interpret raw data to get valuable information.
	Perform statistical analysis and biological correlation for the results.
	Present and describe the results graphically.
	Suggest solution to the problem understudy based on this presented data.
	Modify methods for analysis of samples

4^{th}	- Communicate with supervisors to discuss results
	Work effectively as a member of a team (e.g. Supervisors, various professionals and Technicians).
	Present the results periodically in seminars.
	Write scientific reports on the obtained results with conclusive significance.
	Discuss obtained results in comparison with pervious literatures.
	Suggest possible recommendations based on the outcome of the thesis and decide future plans.
	Summarize the thesis in an understandable Arabic language for non professionals.
	Write references in the required form (Thesis, Paper).
	Demonstrate the thesis in a final power point presentation.
	Continue self-learning throughout the experimental work and writing scientific papers.
<u>I</u>	•

5- Teaching and Learning Methods:

- Self learning (Activities, Research....)
- Open discussion

6- References:

- Websites: Pubmed, Sciencedirect, Weilyinterscience

Facilities required for:

1. For practical work: U.V spectrophotometer, Sonicator, Colorimeter, Flouremeter, HPLC.

Head of Department: Prof. Dr. Mohamed Naguib El-Balkeny

	Matrix of PhD Thesis in Analytical chemistry Program			
	NARS	Program ILOs	Thesis ILOs	Course contents
nowledge and Understanding	2.1.1- Fundamental and in-depth knowledge and basic theories in the field of specialty and the closely related areas of pharmaceutical sciences	A.1- Illustrate the basis of analytical chemistry and related subjects including: Chemometry, Spectroscopy and Chromatography	Outline different principles of analytical chemistry and their possible application in the research study	• Collect all available information about this subject by all possible means.
	2.1.2- Fundamentals, methods, techniques, tools and ethics of scientific research	A.2- Describe the vast important applications of analytical chemistry.	Demonstrate methods and techniques used during working in the area of specialization of research	• Increase the awareness of the recent pharmaceutical techniques that will be used during practical work and determined by the protocol.
	2.1.3- The ethical and legal principles in pharmacy and academic practices	A.3- Comprehend the ethical aspects required by professionals.	Understand the legal aspects of for professional and academic practices	Define ethics of scientific research.
K	2.1.4- The principles and bases of quality assurance in professional practice in the field of specializations	A.4- Demonstrate full commitment to good laboratory practice and quality assurance.	Illustrate the importance of quality assurance during the analysis of different drugs	•Integrate different knowledge (analytical chemistry, pharmaceutical and organic chemistry knowledge, biostatistics,) to solve suggested problem.

	2.1.5- All relevant knowledge concerning the impact of professional practice on society and environment and the ways of their conservation and development	A.5- Identify the beneficial impact and applications of analytical chemistry towards a safe environment.	Define different practices that can be used in understanding the problem of the research and help in solving it	•Integrate different knowledge (analytical chemistry, pharmaceutical and organic chemistry knowledge, biostatistics,) to solve suggested problem.
tual Skills	2.2.1- Analyze, evaluate the data in his / her specified area, and utilize them in logical inference processes (induction/deduction).	B.1- Apply the proper testing and calculations for data interpretation.	Solve problems related to practical work by obtained quantitative data from the practical work	 Collect raw data for the tested samples. Interpret raw data to get valuable information. Perform statistical analysis for the results. Present and describe the results graphically. Suggest solution to the problem understudy based on this presented data.
Intelle	2.2.2- Propose solutions to specified problems in the light of the available data (information).	B.2- Suggest the most appropriate analytical technique for assaying the pharmaceutical or biological samples.	Discuss professional problems and suggest solutions rely on knowledge and recent information	• Separation of samples by qualitative and quantitative determination and assay by advanced instruments and techniques.
	2.2.3- Conduct research studies that add to the current knowledge.	B.3- Apply proper research tools to establish novel facts and solve new or existing analytical problems using scientific methods.	Plan a research in the research field	• Design the protocol including the steps of work following the suitable timetable.

	2.2.4- Formulate scientific papers.	B.4- Establish a good knowledge in writing and publishing research papers.	Integrate scientific results and write report following conducting research	Write scientific reports on the obtained results with conclusive significance.
	2.2.5- Assess hazards and risks in professional practice in his / her area of specialization.	B.5- Recognize possible hazards during work and how to deal with	Manage risks and hazards related to professional practical area	• Evaluate and manage hazards (chemical) throughout the whole practical work.
	2.2.6- Plan to improve performance in the pharmaceutical area of interest.	B.6- Integrate the gained knowledge of analytical chemistry for assaying pharmaceuticals of complex nature and Design a laboratory protocol for a requested analytical issue.	Outline principles that should be followed in research to develop laboratory performance	Design the protocol including the steps of work following the suitable timetable.
	2.2.7- Take professional decisions and bears responsibility in wide array of pharmaceutical fields	B.7- Take professional decisions in the area of specialization.	Decide what to do with full responsibility in scientific research	Suggest the possible points/ problems of research that the candidate can work on in the frame of the aim of work and choose proper point. • Suggest possible recommendations based on the outcome of the thesis and decide future plans.

	2.2.8- Be creative and innovative	B.8- Show creativity in solving analytical problems.	Demonstrate creativity and innovation in modifying techniques and in utilization of various therapy.	• Separation of samples by qualitative and quantitative determination and assay by advanced instruments and techniques.
	2.2.9- Manage discussions and arguments based on evidence and logic.	B.9- Discuss different logical solutions for a given analytical problem	Outline principles that was used to solve different problems	• Present the results periodically in seminars.
nd Practical Skills	2.3.1- Master basic and modern professional skills in the area of specialization.	C.1- Recognize with personal command the recent laboratory techniques in Analytical Chemistry research.	Apply different techniques related to practical thesis work.	Identify different analytical techniques and methods used to assess parameters related to the subject under study.
	2.3.2- Write and critically evaluate professional reports.	C.2- Write with confidence reliable scientific reports in analytical chemistry field.	Use and evaluate practical data to write report	Summarize the thesis in an understandable Arabic language for non professionals. Write references in the required form (Thesis, Paper).
Professional a	2.3.3- Evaluate and develop methods and tools existing in the area of specialization.	C.3- Develop and assess novel methods of analysis.	Estimate laboratory techniques used in analytical chemistry. Develop methods of assay of various parameters.	Operate scientific instruments according to instructions. • Separation of samples by qualitative and quantitative determination and assay by advanced instruments and techniques.

	2.3.4- Properly use technological means in a better professional practice	C.4- Implement sophisticated analytical instruments for assay of analytes of complex nature.	Use IT skills in collecting information, presenting results and writing thesis	Use internet, journals, books and others thesis to get previous and recent information about the subject understudy. • Perform statistical analysis for the results. Present and describe the results graphically. Present the results periodically in seminars.
	2.3.5- Plan to improve professional practices and to improve the performance of other scholars	C.5- Set a plan for the improvement of professionals and researchers.	Improve laboratory techniques.	Modify methods for analysis of samples
eneral and Transferable Skills	2.4.1- Effective communication in its different forms	D.1- Interact effectively with patient and professionals.	Interact with health care professional.	Communicate with supervisors to discuss results.
	2.4.2- Efficiently use the information technologies (IT) in improving the professional practices	D.2- Acquire computer skills such as internet, word processing, chemometric and kinetic softwares.	Use information technology in review and thesis preparation	Present the results periodically in seminars Demonstrate the thesis in a final power point presentation.
	2.4.3- Help others to learn and evaluate their performance.	D.3- Help your colleagues and coworkers to increase the quality of research.	Set rules for evaluation and judge others performance.	Discuss obtained results in comparison with pervious literatures.
	2.4.4- Self-assessment and continuous working.	D.4- Practice self assessment and continuous working in the field analytical chemistry.	Study independently and evaluate learning needs in analytical chemistry.	Continue self-learning throughout the experimental work and writing scientific papers.
G	2.4.5- Use various sources to get information and knowledge.	D.5- Retrieve information from various sources in the field of analytical chemistry.	Use up-to-date information in analytical chemistry.	Use internet, journals, books and others thesis to get previous and recent information about the

Zagazig university

Faculty of Pharmacy

			subject understudy.
2.4.6- Work as a member and lead a team of workers	D.6- Work effectively as a member of team, and improve leadership skills.	Implement tasks as a member of a team.	Work effectively as a member of a team (e.g. Supervisors, various professionals and Technicians).
2.4.7-Direct scientific meetings and to manage time effectively	D.7- Optimize work hours, and call for periodical scientific meetings.	Utilize time effectively to achieve goals	Organize the experimental work according to the designed protocol.