ila slaall g hlaslall 40— 5 58 3] dxala
Zagazig University — Faculty of Computers and Informatics

sl agle aud il jhal alal) (sinall 1llh

CS100: Introduction to Computational Thinking

Computational thinking (CT) is a problem-solving process with the aid of computer; i.e.
formulating a problem and expressing its solution in such a way that a computer can effectively
carry it out. It includes several characteristics, such as breaking a problem into small and
repetitive ordered steps, logically ordering and analyzing data and creating solutions that can be
effectively implemented as algorithms running on computer. As such, computational thinking is
essential not only to the Computer Science discipline, it can also be used to support problem
solving across all disciplines, including math, science, engineering, business, finance and
humanities. The aim of this course is hence to take students with no prior experience of thinking
in a computational manner to a point where they can derive simple algorithms and code the
programs to solve some basic problems in their domain of studies. In addition, the course will
include topics to appreciate the internal operations of a processor and raise awareness of the
socio-ethical issues arising from the pervasiveness of computing technology. The course also
includes learn to design, write, debug, and run programs encoded in the Python language.
Develop a working knowledge for how computers operate and how computer programs are
executed. Evolve critical thinking and problem-solving skills using an algorithmic approach.
Learn about the programmer’s role in the software development process. Translate real-world
issues into computer-solvable problems.

CS101: Computer Programming |

Introduces the fundamental concepts of procedural programming. Topics include data types,
control structures, functions, arrays, files, and the mechanics of running, testing, and debugging.
The course also offers an introduction to the historical and social context of computing and an
overview of computer science as a discipline. The course also includes Fundamental
programming constructs: Syntax and semantics of a higher-level language; variables, types,
expressions, and assignment; simple 1/O; conditional and iterative control structures; functions
and parameter passing; structured decomposition. Algorithms and problem-solving: Problem-
solving strategies; the role of algorithms in the problem-solving process; implementation
strategies for algorithms; debugging strategies; the concept and properties of algorithms.

CS102: Computer Programming 11

Introduces the concepts of object-oriented programming to students with a background in the
procedural paradigm. The course begins with a review of control structures and data types with
emphasis on structured data types and array processing. It then moves on to introduce the object-
oriented programming paradigm, focusing on the definition and use of classes along with the
fundamentals of object-oriented design. Other topics include an overview of programming
language principles, simple analysis of algorithms, basic searching and sorting techniques, and
an introduction to software engineering issues. The course also includes Review of control
structures, functions, and primitive data types. Object-oriented programming: Object-oriented
design; encapsulation and information hiding; separation of behavior and implementation;

74 (40 dsia adiaall el aUaiy — (s o ) SIS Ads yad 2040000 Aa53U)



ila slaall g hlaslall 40— 5 58 3] dxala
Zagazig University — Faculty of Computers and Informatics

classes, subclasses, and inheritance; polymorphism; class hierarchies. Fundamental computing
algorithms: simple searching and sorting algorithms (linear and binary search, selection and
insertion sort). Fundamentals of event-driven programming; Introduction to computer graphics:
Using a simple graphics API; Overview of programming languages: History of programming
languages; brief survey of programming paradigms

CS103: Discrete Structures

Introduces the foundations of discrete mathematics as they apply to computer science, focusing
on providing a solid theoretical foundation for further work. Topics include functions, relations,
sets, simple proof techniques, Boolean algebra, propositional logic, digital logic, elementary
number theory, and the fundamentals of counting. The course also includes Introduction to logic
and proofs: Direct proofs; proof by contradiction; mathematical induction. Fundamental
structures: Functions (surjections, injections, inverses, composition); relations (reflexivity,
symmetry, transitivity, equivalence relations); sets (Venn diagrams, complements, Cartesian
products, power sets); pigeonhole principle; cardinality and countability. Boolean algebra:
Boolean values; standard operations on Boolean values; de Morgan's laws. Propositional logic:
Logical connectives; truth tables; normal forms (conjunctive and disjunctive); validity. Digital
logic: Logic gates, flip-flops, counters; circuit minimization. Elementary number theory:
Factorability; properties of primes; greatest common divisors and least common multiples;
Euclid's algorithm; modular arithmetic; the Chinese Remainder Theorem. The course also
includes Predicate logic: Universal and existential quantification; modus ponens and modus
tollens; limitations of predicate logic. Recurrence relations: Basic formulae; elementary solution
techniques. Graphs and trees: Fundamental definitions; simple algorithms; traversal strategies;
proof techniques; spanning trees; applications. Matrices: Basic properties; applications.

CS200: Data Structures

Specification, representation, and manipulation of basic data structures: linked lists, arrays,
stacks, queues, trees, strings, symbol tables, Huffman codes, optimal search trees, pattern
matching, priority queues, heaps, hash tables. Storage allocation, garbage collection, compaction,
reference counts, Sorting, graphs (graph traversal, directed graphs). List and string processing
languages. Analysis of algorithms. Performance evaluation involving worst case, average and
expected case, and amortized analysis. Students are required to write programs in several
languages such as C++, C#, Java, or Pascal.

CS201: Operating Systems

This course will introduce operating system design and implementation. The course will start
with a brief historical perspective of the evolution of operating systems over the last fifty years,
and then cover the major components of most operating systems. This will include: Computer
system structures, Operating system structures, Process and Process management: process
synchronization and mutual exclusion; two- process solution and Dekker's algorithm,
semaphores (producer- consumer, readers-writer, dining philosophers, etc.), Interprocess
communication, Process synchronization, Deadlocks, thread management, CPU scheduling:
multiprogramming and time-sharing, scheduling approaches (SJF, FIFO, round robin, etc.),

74 (4] dsia adiaall el aUaiy — (s o ) SIS Ads yad 2040000 Aa53U)



ila slaall g hlaslall 40— 5 58 3] dxala
Zagazig University — Faculty of Computers and Informatics

Memory hierarchy and management: with and without swapping, virtual memory-paging and
segmentation, page replacement algorithms, implementation., Virtual memory, Secondary
storage management, 1/0 device management, File system: interface and implementation, FS
services, disk space management, directory and data structure, Protection and security, and Case
studies: Linux and Windows.

CS202: Analysis and Design of Algorithms

An introduction to the design and analysis of algorithms. The course covers design techniques,
such as dynamic programming and greedy methods, as well as fundamentals of analyzing
algorithms for correctness and time and space bounds. Topics include advanced sorting and
searching methods, graph algorithms and geometric algorithms, notion of an algorithm: big-O,
small-O, theta and omega notations. Space and time complexities of an algorithm. Fundamental
design paradigms: divide and conquer, branch and bound, backtracking, dynamic programming
greedy methods, simulation. Theory of NP-completeness, notion of an intractable problem.
Measures of approximation: ratio bound and relative error. Polynomial time approximation
scheme. Illustrative examples: graph theory, computational geometry, optimization, numerical
analysis and data processing. Other areas vary from year to year, and may include matrix
manipulations, string and pattern matching, set algorithms, polynomial computations, and the
fast Fourier transform.

CS203: Artificial Intelligence

This is an introductory Al course. Topics will include Artificial and human intelligence,
Overview of Artificial Intelligence, Basic Problem-Solving Strategies, Heuristic Search, Problem
Reduction and AND/OR Graphs, domains of Al- symbolic processing: semantic nets, modeling
model-based reasoning, frames. Knowledge Representation, Representing Knowledge with If-
Then Rules. Inference Engines, Inference techniques: implication, forward and backward
chaining, inference nets, predicate logic, quantifiers, tautology, resolution, and unification. Rule
based systems: inference engine, production systems, problem solving, planning, decomposition,
and basic search techniques. Al languages: symbolic and coupled processing prolog: objects and
relations, compound goals, backtracking, search mechanism, dynamic databases, lisp, program
structure and operations, functions, unification, memory models. Fields of Al: heuristics and
game plying, automated reasoning, problem solving, computational linguistics and natural
language processing, computer vision, intelligent agents, robotics Al based computer systems:
sequential and parallel inference machines, relation between Al and artificial neural nets, fuzzy
systems.

CS300: Human Computer Interaction Design

Introduction to Human-Computer Interaction, or how computers communicate with people.
Methodology for designing and testing user interfaces, interaction styles (command line, menus,
graphical user interfaces, virtual reality), interaction techniques (including use of voice, gesture,
and eye movement), design guidelines, and user interface management system software.
Comprehensive coverage of computer human interaction(CHI) importance, design, theories, and

74 (42 dsia adiaall el aUaiy — (s o ) SIS Ads yad 2040000 Aa53U)



ila slaall g hlaslall 40— 5 58 3] dxala
Zagazig University — Faculty of Computers and Informatics

future direction; modeling compute interfaces, empirical techniques for task analysis and
interface design of interaction, The scope of HCI: Different theories and disciplines that
contribute to HCI, HCI Analysis: User analysis, task analysis, environment and domain analysis,
Human Cognitive Architecture: Perception, memory, problem solving, Dialogue design: Input,
output devices and ergonomics; embedded systems; web usability; interfaces for mobile devices;
future systems, CSCW, Influences on Design: Guidelines and standards in HCI; conceptual
design, Prototyping in HCI: vertical, horizontal, full, throw-away prototypes, and Empirical
evaluation: qualitative and quantitative methods of collecting data from users; the Usability
Engineering approach; research topics in evaluation techniques. Students will design a small user
interface, program a prototype, and then test the result for usability.

CS301: Systems Programming

Low-level programming; review of addresses, pointers, memory layout, and data representation;
text, data, and bss segments; debugging and hex dumps; concurrent execution with threads and
processes; address spaces; file names; descriptors and file pointers; inheritance; system calls and
library functions; standard 1/0 and string libraries; simplified socket programming; building
tools to help programmers; make and make files; shell scripts and quoting; Unix tools including
sed, echo, test, and find; scripting languages such as awk; version control; object and executable
files (.0 and a.out); symbol tables; pointers to functions; hierarchical directories; and DNS
hierarchy; programming embedded systems.

CS302: Formal Languages and Automata

Alphabets and languages. Finite representation of language. Deterministic and non-deterministic
finite automata and their applications. Equivalence considerations. Regular expressions. Context-
free languages. Context-free grammars. Regular languages, pushdown automata. Properties of
context-free languages. Determinism and parsing top-down parsing, and bottom-up parsing.
Turing machines: Computing with Turing machines, combining Turing machines, and
nondeterministic Turing machines.

CS303: Machine Learning

Machine Learning is concerned with computer programs that automatically improve their
performance through experience. Machine Learning methods have been applied to problems
such as learning to drive an autonomous vehicle, learning to recognize human speech, and
learning strategies for game playing. This course covers the primary approaches to machine
learning from a variety of fields, including inductive inference of decision trees, neural network
learning, statistical learning methods, genetic algorithms, bayesian methods, explanation-based
learning, and reinforcement learning

CS304: Software Testing and Maintenance

Techniques and methods for developing and extending correct, stable, maintainable and efficient
software. Testing methodologies and their practical application in software development.
Different aspects of testing: Black box testing where testing is done without knowledge of how

74 (43 dsia adiaall el aUaiy — (s o ) SIS Ads yad 2040000 Aa53U)



ila slaall g hlaslall 40— 5 58 3] dxala
Zagazig University — Faculty of Computers and Informatics

the program is written; white box testing where the developer tries to guarantee that every
statement, execution path and method is executed during the testing and finally unit testing
which is a practical design methodology where test cases are developed as each function or
method is written. Software developing aids and methods such as code-inspection. Code and
memory profiling as a support for program optimizing.

CS400: High Performance Computing

This course is an introductory course on high-performance computing. High-performance
computing refers to a specialized use and programming of (parallel) supercomputers, computer
clusters, and everything from software to hardware to speed up computations. The CPU clock
speed of desktop and commodity processors has reached a maximum range, due to physical
limitations. As a result, more advanced (and often creative) use of software and parallel
hardware is required to further speed up processing. In this course you will learn how to write
faster code that is highly optimized for modern multi-core processors and clusters, using modern
software development tools, performance profilers, specialized algorithms, parallelization
strategies, and advanced parallel programming constructs in OpenMP and MPI.

CS401: Compiler Design

The Structure of a Compiler course, Lexical Analyzer, LEX, Design of Lex, Top down Parsing,
LL(1) Parsers, Bottom up Parsing, YACC, LR parsers, Syntax Directed Translation, Types and
Type Checking, Run-Time Storage Administration and Symbol Table Management, Intermediate
Code and Code Generation, Data-Flow Analysis, Code Optimizations, Architecture and recent
development on compilers

CS402: Distributed and Concurrent Algorithms

Goals of the course: To present fundamental algorithms and impossibility results from the
concurrent programming literature, and to cover techniques for formally specifying and verifying
concurrent systems. Both message-passing and shared-memory models of concurrency will be
considered. At the end of the course, students will have a general knowledge of the concurrent
programming literature and will be able to develop new concurrent algorithms and verify their
correctness. Perhaps the most important skill to be developed is the ability to intuitively “see”
how or why a concurrent program works (a skill most students probably take for granted when it
comes to sequential programs). In other words, this class will teach you how to \think"
concurrently.

CS403: Neural networks and deep learning

Over the past few years, neural networks have enjoyed a major resurgence in machine learning,
and today vyield state-of-the-art results in various fields. This course introduces deep neural
network models, and surveys some the applications of these models in areas where they have
been particularly successful. The course covers feedforward networks, convolutional networks,
recurrent and recursive networks, as well general topics such as input encoding and training

74 (< 44 Faia sadinall e lall allats — (o s ) IS Al el 20000 2350



ila slaall g hlaslall 40— 5 58 3] dxala
Zagazig University — Faculty of Computers and Informatics

techniques. The course also provides acquaintance with some of the software libraries available
for building and training deep neural networks.

CS404: Bioinformatics

Introduces bioinformatics concepts and practice. Topics include biological databases, sequence
alignment, gene and protein structure prediction, molecular phylogenetics, genomics and
proteomics. Students will gain practical experience with bioinformatics tools and develop basic
skills in the collection and presentation of bioinformatics data, as well as the rudiments of
programming in a scripting language.

CS405: Fuzzy Logic and Intelligent Systems

Fuzzy Set and Fuzzy Logic: motivation, possibilistic interpretation, basic concepts, set
operations, fuzzy relations, and fuzzy inferences. Fuzzy Logic Applications: approximate
reasoning, fuzzy arithmetic, linguistic models, decision theory, classification, and fuzzy
controllers (development, tuning, compilation, deployment). Computational Intelligence (CI):
hybrid systems based on fuzzy, neural and evolutionary computation. Case studies of real world
industrial and financial applications.

CS406: Software Design and Architecture

This course is concerned with the principles and concepts of engineering of large software
systems and programs. Software architecture is an abstraction of system details that helps in
managing the inherent complexity of software systems development. Software architecture
provides opportunities for early evaluation of user needs, analysis of requirements and design,
and prediction of system properties. Architectural styles, views, notations, and description
languages provide systematic frameworks for engineering decisions and design practices. The
focus of the course is on advanced topics related to software architecture practices, technologies,
and artifacts. Students participate in individual or group projects related to developing
architectural representations of software systems.

CS407 Natural Language Processing

Foundations of the natural language processing, language data in corpora, levels of description:
phonetics and phonology, morphology, syntax, semantics and pragmatics. Traditional vs. formal
grammars: representation of morphological and syntactic structures, meaning representation.
context-free grammars and their context-sensitive extensions, DCG (Definite Clause Grammars),
CKY algorithm (Cocke-Kasami-Younger), chart-parsing. Problem of ambiguity. Electronic
dictionaries: representation of lexical knowledge. Types of the machine-readable dictionaries.
Semantic representation of sentence meaning. The Compositionality Principle, composition of
meaning. Semantic classification: valence frames, predicates, ontologies, transparent intentional
logic (TIL) and its application to semantic analysis of sentences. Pragmatics: semantic and
pragmatic nature of noun groups, discourse structure, deictic expressions, verbal and non-verbal
contexts. Natural language understanding: semantic representation, inference and knowledge
representations.

74 (e 45 dsiia adiaall el aUaiy — (s o ) SIS Ads yad 2040000 Aa53U)



ila slaall g hlaslall 40— 5 58 3] dxala
Zagazig University — Faculty of Computers and Informatics

CS408: Soft Computing

Evolutionary computation (EC), neuro-computation (NC) and fuzzy logic (FL), are considered as
three major components of the so-called soft computing. The main idea of soft computation is to
make decisions based on rough (incomplete, noisy, uncertain) data. The computing technology
which make decisions based on clean, clear and complete data is often called hard computing,
although researchers in this field are not hard at all (they are the most intelligent and flexible
people in the world). The human brain is a computing machine consisting of two parts. The left
part is good at hard computing (logical thinking), and the right part is good at soft computing
(heuristic thinking). During the last half century, we developed a lot of computers for assisting
the left part of the brain. In this century, we will put more energy to make computers to assist the
right part of the brain.

CS409: Introduction to Cryptography

Cryptography provides important tools for ensuring the privacy, authenticity, and integrity of the
increasingly sensitive information involved in modern digital systems. Nowadays, core
cryptographic tools, including encryption, message authentication codes, digital signature, key
agreement protocols, etc., are used behind millions of daily on-line transactions. In this course,
we will unveil some of the "magic” of cryptography. Modern Cryptography uses mathematical
language to precisely pin down elusive security goals, design primitives and protocols to achieve
these goals, and validate the security of designed primitives and protocols using mathematical
proofs based on clearly stated hardness assumptions. Therefore, to learn cryptography, it is
essential to understand its mathematical underpinning. In this class, we will see the inner
working of cryptography for several core cryptographic tools, from encryption, to message
authentication codes, to hash functions, to digital signatures, etc.

CS410: Theory of Computation

An introduction to the theoretical foundations of computing, including abstract models of
computing machines, the grammars those machines recognize, and the corresponding classes of
languages. Topics include: Church's thesis; Grammars, the M-recursive functions, and Turing
computability of the M-recursive functions, The incompatibility: The halting problem, Turing
innumerability, Turing acceptability, and Turing decidability, unsolvable problems about Turing
machines and M-recursive functions, Computational complexity: Time-bounded Turing
machines, Rate of growth of functions, NP- Completeness, The complexity hierarchy, The
prepositional calculus: Syntax, Truth-assignment, Validity and satisfy, and Equivalence and
normal forms compactness.

CS411: Programming Language Design

This course is an introduction to the principles which underlie the definition and implementation
of programming languages. Study of modern programming language paradigms (procedural,
functional, logic, object oriented). Introduction to the design and implementation of
programming languages including syntax, semantics, data types and structures, control
structures, and run-time environments.

74 (e 46 daiia adiaall el aUaiy — (s o ) SIS Ads yad 2040000 Aa53U)



ila slaall g hlaslall 40— 5 58 3] dxala
Zagazig University — Faculty of Computers and Informatics

CS4112: Intelligent Agents

This course gives a broad introduction to the new and rapidly expanding field of agent-based
computing. It introduces the key concepts and models of the field, dealing both with the
individual agents and with their interactions. Emphasis is placed on automated negotiation,
cooperation and on-line auctions, and students are required to program a trading agent in Java
which will compete in a class tournament within a simulated trading environment.

CS413: Computer Systems Performance

It introduces the main concepts and techniques needed to plan the capacity of computer systems,
predict their future performance under different configurations, and design new applications that
meet performance requirements. The course is mainly based on the use of analytic queuing
network models of computer systems. These techniques are applied to study the performance of
centralized, distributed, parallel, client/server systems, Web server and e-commerce site
performance. The course also discusses performance measuring tools for operating systems such
as Unix and Windows.

CS425: Selected Topics in Computer Science |

Selected Topics provides an opportunity to study a topic which is not included in the existing
curriculum. This course examines one or more selected current issues in the area of Computer
Science. Topics chosen for study will be by arrangement with the department.

CS426: Selected Topics in Computer Science 11

Selected Topics provides an opportunity to study a topic which is not included in the existing
curriculum. This course examines one or more selected current issues in the area of Computer
Science. Topics chosen for study will be by arrangement with the department.

CS430/CS431: Project

This course will continue for two semesters. In the first semester, a group of students will select
one of the projects proposed by the department and analyze the underlying problem. In the
second semester, the design and implementation of the project will be conducted. The student
will deliver oral presentations, progress reports, and a final report.

74 (e 47 dsiia adiaall el aUaiy — (s o ) SIS Ads yad 2040000 Aa53U)



