PHYSIOLOGICAL AND ANATOMICAL STUDIES ON THE EFFECT OF GAMMA AND LASER IRRADIATION AND SOME BIOREGULATORS TREATMENTS ON THE GROWTH, FLOWERING AND KEEPING QUALITY OF GERBERA

BY

SAMII ALI METWALLY MOHAMED

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY in

Agricultural Science (Horticulture, Floriculture)

Department of Horticulture

Faculty of Agriculture

Zagazig University

2010
PHYSIOLOGICAL AND ANATOMICAL STUDIES ON THE EFFECT OF GAMMA AND LASER IRRADIATION AND SOME BIOREGULATORS TREATMENTS ON THE GROWTH, FLOWERING AND KEEPING QUALITY OF GERBERA

BY

SAMI ALI METWALLY MOHAMED

B. Sc. Agric. Sciences (Horticulture), Fac.of Agric., Ain Shams Univ. (1992)
M. Sc. Agric. Sciences (Horticulture, Floriculture), Fac. of Agric.,
Cairo Univ.(2004)

Under the Supervision of:

Prof. Dr. Abd El Rahman E. Awad

Prof. Emeritus of Floriculture,
Hort Dept., Fac.Agric., Zagazig Univ.

Prof. Dr. Bdour M. H. Abou Leila

Prof. of Plant Physiology, Water Relation
and Field Irrigation Dept., Nat. Res.Center

Dr. Hesham A. El Shamy

Associate Prof. of Ornamental Plants,
Hort. Dept., Fac. Agric., Zagazig Univ.
Approval Sheet

PHYSIOLOGICAL AND ANATOMICAL STUDIES ON THE EFFECT OF GAMMA AND LASER IRRADIATION AND SOME BIOREGULATORS TREATMENTS ON THE GROWTH, FLOWERING AND KEEPING QUALITY OF GERBERA

BY

SAMI ALI METWALLY MOHAMED

B.Sc. Agric. Sciences (Horticulture), Fac.of Agric., Ain Shams Univ. (1992)
M. Sc. Agric. Sciences (Horticulture, Floriculture), Fac. of Agric.,
Cairo Univ. (2004)

This thesis for Ph. D. degree has been approved by:

Prof. Dr. Abd El Rahman E. Awad
Prof. Emeritus of Floriculture,
Hort. Dept., Fac.Agric., Zagazig Univ.

Prof. Dr. Magda M. Kandeal
Prof. Emeritus of Ornamental Plants,
Orn. Dept., National Research Center

Prof. Dr. Azza A. Tawfiek
Prof. of Ornamental Plants,
Hort. Dept., Fac.Agric., Assuit Univ.

Dr. Hesham A. El Shamy
Associate Prof. of Ornamental Plants,
Hort. Dept., Fac. Agric., Zagazig Univ.

Date of examination: 28 / 4 / 2010
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. REVIEW OF LITERATURE</td>
<td>6</td>
</tr>
<tr>
<td>III. MATERIALS AND METHODS</td>
<td>42</td>
</tr>
<tr>
<td>IV. RESULTS AND DISCUSSION</td>
<td>52</td>
</tr>
</tbody>
</table>

1– The main effect of progesterone, gamma, helium neon and argon laser irradiation as well as the interaction between progesterone concentrations and irradiation treatments on growth characters.......................... 52

I-Vegetative growth.. 52

I-1-Plant height (cm) ... 52
I-2-Number of leaves /plant ... 53
I-3-Leaf area /plant (cm²).. 54
I-4- Number of offshoots /plant... 55
I -5- Fresh weight (g/plant).. 56
I -6- Dry weight (g/plant)... 57

II- Effect of progesterone, gamma, helium neon and argon laser irradiation as well as the interaction between progesterone concentrations and irradiation treatments on growth characters.......................... 64

II-Vegetative growth ... 64
II-1- Plant height (cm)... 64
II-2- Number of leaves/plant .. 65
II-3- Leaf area/plant (cm²) .. 67
II- 4- Number of offshoots/plant.. 72
II-5- Fresh and Dry weights (g/plant)................................. 73

III- The main effect of progesterone, gamma, helium neon and argon laser irradiation as well as the interaction between progesterone concentrations and irradiation treatments on flower characters.. 79
III-1-Number of flowers/plant.. 89
III-2-Stalk length (cm) .. 80
III-3- Stalk diameter (mm) .. 81
III-4-Flower diameter (cm) .. 82
III-5-Vase life (day).. 83
 III-6-Number of days to flower (day) 84
III-7-Flowering period (day) .. 85

IV- Effect of progesterone, gamma, helium neon and argon laser irradiation as well as the interaction between progesterone concentrations and irradiation treatments on flower characters... 90
IV-1-Number of flowers/plant .. 90
IV-2-Stalk length (cm) .. 92
IV-3- Stalk diameter (mm) .. 94
IV-4- Flower diameter (cm) .. 95
IV-5- Vase life (day).. 96
IV-6-Number of days to flower (day) 97
IV-7- flowering period (day) ... 99
V- The main effect of progesterone, gamma, helium neon and argon laser irradiation as well as the interaction between progesterone concentrations and irradiation treatments on photosynthetic pigments... 108
V-1-Chlorophyll a (mg/g.f.wt.).. 108
V-2-Chlorophyll b (mg/g.f.wt). ... 109
V-3–Total Chlorophyll (mg/g.f.wt). ... 109
V-4-Carotenoids (mg/g.f.wt). ... 110
VI- Effect of progesterone, gamma, helium neon and argon laser irradiation as well as the interaction between progesterone concentrations and irradiation treatments on photosynthetic pigments and soluble carbohydrate......... 113
VI-1- Chlorophyll a (mg/ g.f.wt). .. 113
VI-2- Chlorophyll b (mg/ g.f.wt)... 115
VI-3-Total Chlorophyll (mg/ g.f.wt). .. 116
VI-4-Carotenoids (mg/ g.f.wt). ... 119
VI- 5-Soluble carbohydrate %.. 119
VII- Effect of progesterone, gamma, helium neon and argon laser irradiation on endogenous hormones (μg/g/f.w) in leaves of Gerbera jamesonii plant.. 124
VII-1- Indol acetic acid concentration (IAA) (μg/g/f.w)......... 124
VII-2- Gibberellins GA-like substances, As (GA₃) (μg/gf.w)…. 124
VII-3- Cytokinins (μg/g f.w)... 125
VII-4- Abscisic acid ABA (μg/g/f.w) 125

VIII- Effect of progesterone, gamma, helium neon and argon laser irradiation on enzyme activity and protein in leaves of Gerbera jamesonii plant.. 131

VIII-1- Peroxidase (Eu/mg protein/min) 131
VIII-2- Catalase (Eu.g.f.wt) ... 132
VIII-3- Alkaline phosphatase (µg/ml)................................. 133
VIII-4- Acid phosphatase (µg/ml) 134
VIII-5- Protein (mg/ml).. 135

IX- Effect of progesterone, gamma, helium neon and argon laser irradiation as well as the interaction between progesterone and irradiation treatments on anatomical structure of gerbera leaves.. 141

IX-1- Number of vascular bundles 141
IX-2-Dimention of bundles (length/width μm) 142
IX- 3- Thickness of midvein (µm) 143
IX-4- Thickness of lamina (µm) .. 144
IX-5-Number of xylem rows .. 145
IX-6-Number of vessels .. 145

Correlation Coefficient study ... 158

1- Correlation Under the single progesterone treatments........ 158
<table>
<thead>
<tr>
<th>2-Correlation under the interaction inhibited flowers treatments</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL DISCUSSION</td>
<td>163</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>175</td>
</tr>
<tr>
<td>5. SUMMARY</td>
<td>181</td>
</tr>
<tr>
<td>6. LITERATURE CITED</td>
<td>184</td>
</tr>
<tr>
<td>ARABIC SUMMARY</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>The main effect of progesterone concentrations, gamma, helium neon and argon laser irradiation as well as the interaction between progesterone and irradiation treatments on growth characters of Gerbera jamesonii plants, during the two seasons of 2006 and 2007</td>
<td>59</td>
</tr>
<tr>
<td>(2)</td>
<td>Effect of progesterone, gamma, helium neon and argon laser irradiation as well as the interaction between progesterone and irradiation treatments on growth characters of Gerbera jamesonii plants, during the two seasons of 2006 and 2007</td>
<td>68</td>
</tr>
<tr>
<td>(3)</td>
<td>Effect of progesterone, gamma, helium neon and argon laser irradiation as well as the interaction between progesterone and irradiation treatments on growth characters of Gerbera jamesonii plants, during the two seasons of 2006 and 2007</td>
<td>75</td>
</tr>
<tr>
<td>(4)</td>
<td>The main effect of progesterone gamma, helium neon and argon laser irradiation as well as the interaction between progesterone and different irradiation treatments on flowers characters of Gerbera jamesonii plants, during the two seasons of 2006 and 2007</td>
<td>86</td>
</tr>
<tr>
<td>(5)</td>
<td>Effect of progesterone, gamma, helium neon and argon laser irradiation as well as the interaction between progesterone and irradiation treatments on flowers characters Gerbera jamesonii plants, during the two seasons of 2006 and 2007</td>
<td>100</td>
</tr>
</tbody>
</table>
(6) Effect of progesterone, gamma, helium neon and argon laser irradiation as well as the interaction between progesterone and irradiation treatments on flowers characters of *Gerbera jamesonii* plants, during the two seasons of 2006 and 2007……………………………… 104

(7) The main effect of progesterone, gamma, helium neon and argon laser irradiation as well as the interaction between progesterone and irradiation treatments on photosynthetic pigments concentration. of *Gerbera jamesonii* leaves, during the two seasons of 2006 and 2007………………………………………………………… 111

(8) Effect of progesterone, gamma, helium neon and argon laser irradiation as well as the interaction between progesterone and irradiation treatments on photosynthetic pigments and soluble carbohydrate % of *Gerbera jamesonii* leaves, during the two seasons of 2006 and 2007……………………………………………………………………………… 120

(9) Effect of progesterone, gamma, helium neon and argon laser irradiation on endogenous hormones in leaves of *Gerbera jamesonii* plants, during the two seasons of 2006 and 2007………………………………………………………… 126

(10) Effect of progesterone, gamma, helium neon and argon laser irradiation on enzyme activities in leaves of *Gerbera jamesonii* plants, during the two seasons of 2006 and 2007……………………………………………………………………………… 136

(11) Effect of progesterone, gamma, helium neon and argon laser irradiation as well as the interaction between progesterone with irradiation treatments on leaves anatomical structure of *Gerbera jamesonii* plants, during the two seasons of 2006 and 2007……………………………….. 147
(12) Simple Correlation coefficient between growth and some biochemical constituents under progesterone hormone treatments (Poold data of 2006 and 2007 seasons)……… 161

(13) Simple Correlation coefficient between growth and some biochemical constituents under interaction inhibited flowers treatments (Poold data of 2006 and 2007 seasons)……………………………………………………………………… 162
LIST OF FIGURES

<table>
<thead>
<tr>
<th>No.</th>
<th>TITLE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>The main effect of progesterone, gamma, helium neon and argon laser irradiation, on number of leaves / plant of Gerbera jamesonii plants, during the two seasons of 2006 and 2007.</td>
<td>60</td>
</tr>
<tr>
<td>(2)</td>
<td>The main effect of progesterone, gamma, helium neon and argon laser irradiation, on Leaf area / plant of Gerbera jamesonii plants, during the two seasons of 2006 and 2007.</td>
<td>61</td>
</tr>
<tr>
<td>(3)</td>
<td>The main effect of progesterone, gamma, helium neon and argon laser irradiation, on number of offshoots / plant of Gerbera jamesonii plants, during the two seasons of 2006 and 2007.</td>
<td>62</td>
</tr>
<tr>
<td>(4)</td>
<td>The main effect of progesterone, gamma, helium neon and argon laser irradiation, on dry weight (g/plant) of Gerbera jamesonii plants, during the two seasons of 2006 and 2007.</td>
<td>63</td>
</tr>
<tr>
<td>(5)</td>
<td>The main effect of progesterone, gamma, helium neon and argon laser irradiation, on number of flowers / plant of Gerbera jamesonii plants, during the two seasons of 2006 and 2007.</td>
<td>87</td>
</tr>
<tr>
<td>(6)</td>
<td>The main effect of progesterone, gamma, helium neon and argon laser irradiation, on flower diameter of Gerbera jamesonii plants, during the two seasons of 2006 and 2007.</td>
<td>88</td>
</tr>
<tr>
<td>(7)</td>
<td>The main effect of progesterone, gamma, helium neon and argon laser irradiation, on vase life/day of Gerbera jamesonii plants, during the two seasons of 2006 and 2007.</td>
<td>89</td>
</tr>
</tbody>
</table>
(8) The main effect of progesterone, gamma, helium neon and argon laser irradiation, on total chlorophyll of *Gerbera jamesonii* leaves, during the two seasons of 2006 and 2007.

(9) Effect of progesterone, gamma, helium neon irradiation, on IAA conc. (μg/g/f.w) of *Gerbera jamesonii* leaves, during the second season of 2007.

(10) Effect of progesterone, gamma, helium neon and argon laser irradiation, on GA3 conc. (μg/g/f.w) of *Gerbera jamesonii* leaves, during the second season of 2007.

(11) Effect of progesterone, gamma, helium neon and argon laser irradiation, on cytokinine conc. (μg/g/f.w) of *Gerbera jamesonii* leaves, during the second season of 2007.

(12) Effect of progesterone, gamma, helium neon and argon laser irradiation, on ABA conc. (μg/g/f.w) of *Gerbera jamesonii* leaves, during the second season of 2007.

(13) Effect of progesterone, gamma, helium neon and argon laser irradiation, on peroxidase activity (Eu/mg protein/min) of *Gerbera jamesonii* leaves, during the second season of 2007.

(14) Effect of progesterone, gamma, helium neon and argon laser irradiation on catalase activity (Eu.g.f.wt) of *Gerbera jamesonii* leaves, during the second season of 2007.

(15) Effect of progesterone, gamma, helium neon and argon laser irradiation, on alkaline phosphatase activity (μg/ml) of *Gerbera jamesonii* leaves, during the second season of 2007.

(16) The effect of progesterone, gamma, helium neon and argon laser irradiation, on acid phosphatase activity (μg/ml) of *Gerbera jamesonii* leaves, during the second season of 2007.
INTRODUCTION

Gerbera jamesonii flowers is one of the most important cut flowers, it is very attractive flower, grown through the world in wide range of climate conditions, which is ideal for bed, border, pots and for rock garden, and highly recommended for exportation. This plant belongs to the family compositae (Asteraceae) which is the largest family of flowering plants, some are food plants and others are drug plants and many are ornamental plants. The later plants is considered one of the very promising plants that have an economic important for exportation to obtain a suitable income. From the ornamental plants of view gerbera is urgently needed extensive efforts to increase the productivity and improving the product quality of this economic plant. Improving growth, flower yield quality and plant constituents by using plant growth promoting such as steroid compounds, rays of gamma and laser have attained much interest at different parts of world. As for steroid compounds, progesterone acts as a mammalian gonadal hormone, it is essential for continuation of early pregnancy and play important role in ovulation. Progesterone has also been reported to be present in *Holarrhena floribunda* leaves (Leboeuf et al. 1964), apple seeds (Gawienowski and Gibbs, 1968) and in pea (*Pisum sativum*) Lino et al. (2007). The effect of progesterone in inducing flowering or generation development in wheat was recorded by (Janeczko and Filek, 2002) and arabidopsis Janeczko et al. (2003). As for Gamma rays belongs to ionizing
radiation and interact to atoms or molecules to produce free radicals in cells. These radicals can damage or modify important components of plant cells and have been reported to affect differentially the morphology, anatomy, biochemistry, and physiology of plants depending on the irradiation level. These effects include changes in the plant cellular structure and metabolism, e.g., dilation of thylakoid membranes, alteration in photosynthesis, modulation of the antioxidative system, and accumulation of phenolic compounds (Kim et al., 2004, Kovacs and Kereszies, 2002 and Wi et al., 2005). As for laser rays belong to unionizing radiation laser is an abbreviation of Light Amplification by Stimulated Emission of Radiation. It is identified by the emitted wavelength and the power.

Properties of laser light

Laser radiation is different from all natural forms of light beams in three ways:

1. It is a coherent beam.
2. Nearly collimated.
3. Monochromatic.

-Types of Lasers :-

Solid state laser (ND YAG, Diode laser, Ruby)
Gas lasers (CO₂, N, He-Ne, Ar)
Dye lasers (cumarin)

1-Helium Neon laser (He-Ne):-
The Helium Neon laser is the most familiar and least expensive gas laser. It emits a fraction of milliwatt to tens of milliwatts (mW) of red light at 632.8 nanometers (nm), As such; it has long been the most common and most economical visible laser. The active medium in a helium Neon laser is a mixture of helium and neon gases at a total pressure of a fraction of a torr to several torrs.

Typical He – Ne laser parameters:

<table>
<thead>
<tr>
<th>Laser Wavelengths</th>
<th>632.8 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumping Method</td>
<td>Electric discharge</td>
</tr>
<tr>
<td>Mode of operation</td>
<td>CW</td>
</tr>
<tr>
<td>Output power</td>
<td>0.5 mW to 100 mW</td>
</tr>
</tbody>
</table>

2- Argon ion laser (Ar):

The argon ion laser is one of a class of noble gas ion lasers that operate in the visible and ultraviolet spectral regions. The argon ion laser can provide approximately 25 visible wavelengths ranging from 408.9 to 686.1 nm and more than 10 ultraviolet wavelengths ranging from 275 to 363.8 nm.

In the visible spectral region, CW powers of up to 100 W are available with the output concentrated on a few strong lines (including the 488 nm and 514.5 nm transition). Argon ion laser operate in high temperature plasma tubes with a bore diameter of 1-2 mm and lengths ranging from 0.1 m to approximately 1.8m.

- **Typical argon ion laser parameters:**
Laser Wavelengths

<table>
<thead>
<tr>
<th>Laser Wavelengths</th>
<th>488 nm & 514.5 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumping Method</td>
<td>Electric discharge</td>
</tr>
<tr>
<td>Mode of operation</td>
<td>CW</td>
</tr>
<tr>
<td>Output power</td>
<td>10 mW to 50 W</td>
</tr>
</tbody>
</table>

- **Laser tissue interaction**

Absten (1992) reported that "the nature of the interaction between laser light and biological tissue can be described in terms of reflection, scattering, transmission and absorption.

![Geometry of reflection, absorption and scattering.](image)

In order for light to exert its effect upon tissue, it has to be absorbed. If it is reflected from or transmitted through the tissue, no effect will occur. If the light is scattered it will be absorbed over a large area, so that its effects will be more diffusive. The effects of laser on biological tissue may be thermal, non-thermal and within each category there are two main modes of action.
1- Thermal processes

Carruth (1987) reported that when tissue absorbs laser energy, the temperature rises. No changes in tissue structure are evident between 37°C and 60°C, however, above that temperature, tissue begins to coagulate.

a- Coagulation

Berns et al. (1992) and Pick (1993) reported that the temperature rise in an irradiated tissue is proportional to light absorption in that tissue which in turn is determined by how effectively its constituent molecules absorb incident photons of a particular wavelength.

b- Vaporization

El-Adely (1997) reported that when laser energy is higher than those required for photo-coagulation, tissue temperature can reach the boiling point of water and rapidly expanding water vapour will cause disruption "photovaporization" before denaturation can cauterize the tissue.

2- Non thermal Processes:

a- photochemical effect:

A direct interaction between laser photons and molecules is responsible for "photochemical" effect (Jeff, 1992).

The aim of this investigation to throw more light on growth, flowering and anatomical structure of gerbera plants by using irradiation with gamma, laser, and progesterone either single or in combination.